Menu Close

Etiqueta: mod

Números de Perrin

Los números de Perrin se definen por la elación de recurrencia

   P(n) = P(n - 2) + P(n - 3) si n > 2,

con los valores iniciales

   P(0) = 3, P(1) = 0 y P(2) = 2.

Definir la sucesión

   sucPerrin :: [Integer]

cuyos elementos son los números de Perrin. Por ejemplo,

   λ> take 15 sucPerrin
   [3,0,2,3,2,5,5,7,10,12,17,22,29,39,51]
   λ> length (show (sucPerrin !! (2*10^5)))
   24425

Comprobar con QuickCheck si se verifica la siguiente propiedad: para todo entero n > 1, el n-ésimo término de la sucesión de Perrin es divisible por n si y sólo si n es primo.

Soluciones

import Data.List (genericIndex, unfoldr)
import Data.Numbers.Primes (isPrime)
import Test.QuickCheck
 
-- 1ª solución
sucPerrin1 :: [Integer]
sucPerrin1 = 3 : 0 : 2 : zipWith (+) sucPerrin1 (tail sucPerrin1)
 
-- 2ª solución
sucPerrin2 :: [Integer]
sucPerrin2 = [x | (x,_,_) <- iterate op (3,0,2)]
  where op (a,b,c) = (b,c,a+b)
 
-- 3ª solución
sucPerrin3 :: [Integer]
sucPerrin3 =
  unfoldr (\(a, (b,c)) -> Just (a, (b,(c,a+b)))) (3,(0,2))
 
-- 4ª solución
sucPerrin4 :: [Integer]
sucPerrin4 = [vectorPerrin n ! n | n <- [0..]]
 
vectorPerrin :: Integer -> Array Integer Integer
vectorPerrin n = v where
  v = array (0,n) [(i,f i) | i <- [0..n]]
  f 0 = 3
  f 1 = 0
  f 2 = 2
  f i = v ! (i-2) + v ! (i-3)
 
-- Comparación de eficiencia
--    λ> length (show (sucPerrin1 !! (3*10^5)))
--    36638
--    (1.62 secs, 2,366,238,984 bytes)
--    λ> length (show (sucPerrin2 !! (3*10^5)))
--    36638
--    (1.40 secs, 2,428,701,384 bytes)
--    λ> length (show (sucPerrin3 !! (3*10^5)))
--    36638
--    (1.14 secs, 2,409,504,864 bytes)
--    λ> length (show (sucPerrin4 !! (3*10^5)))
--    36638
--    (1.78 secs, 2,585,400,776 bytes)
 
 
-- Usaremos la 3ª
sucPerrin :: [Integer]
sucPerrin = sucPerrin3
 
-- La propiedad es  
conjeturaPerrin :: Integer -> Property
conjeturaPerrin n =
  n > 1 ==>
  (perrin n `mod` n == 0) == isPrime n
 
-- (perrin n) es el n-ésimo término de la sucesión de Perrin. Por
-- ejemplo,
--    perrin 4  ==  2
--    perrin 5  ==  5
--    perrin 6  ==  5
perrin :: Integer -> Integer
perrin n = sucPerrin `genericIndex` n
 
-- La comprobación es
--    λ> quickCheck conjeturaPerrin
--    +++ OK, passed 100 tests.
 
-- Nota: Aunque QuickCheck no haya encontrado contraejemplos, la
-- propiedad no es cierta. Sólo lo es una de las implicaciones: si n es
-- primo, entonces el  n-ésimo término de la sucesión de Perrin es
-- divisible por n. La otra es falsa y los primeros contraejemplos son
--    271441, 904631, 16532714, 24658561, 27422714, 27664033, 46672291

Cadenas de divisores

Una cadena de divisores de un número n es una lista donde cada elemento es un divisor de su siguiente elemento en la lista. Por ejemplo, las cadenas de divisores de 12 son [2,4,12], [2,6,12], [2,12], [3,6,12], [3,12], [4,12], [6,12] y [12].

Definir la función

   cadenasDivisores :: Int -> [[Int]]

tal que (cadenasDivisores n) es la lista de las cadenas de divisores de n. Por ejemplo,

   λ> cadenasDivisores 12
   [[2,4,12],[2,6,12],[2,12],[3,6,12],[3,12],[4,12],[6,12],[12]]
   λ> length (cadenaDivisores 48)
   48
   λ> length (cadenaDivisores 120)
   132

Soluciones

import Data.List (sort)
import Data.Numbers.Primes (isPrime)
 
-- 1ª definición
-- =============
 
cadenasDivisores :: Int -> [[Int]]
cadenasDivisores n = sort (extiendeLista [[n]])
    where extiendeLista []           = []
          extiendeLista ((1:xs):yss) = xs : extiendeLista yss
          extiendeLista ((x:xs):yss) =
              extiendeLista ([y:x:xs | y <- divisores x] ++ yss)
 
-- (divisores x) es la lista decreciente de los divisores de x distintos
-- de x. Por ejemplo,
--    divisores 12  ==  [6,4,3,2,1]
divisores :: Int -> [Int]
divisores x = 
    [y | y <- [a,a-1..1], x `mod` y == 0]
    where a = x `div` 2
 
-- 2ª definición
-- =============
 
cadenasDivisores2 :: Int -> [[Int]]
cadenasDivisores2 = sort . aux
    where aux 1 = [[]]
          aux n = [xs ++ [n] | xs <- concatMap aux (divisores n)]
 
-- 3ª definición
-- =============
 
cadenasDivisores3 :: Int -> [[Int]]
cadenasDivisores3 = sort . map reverse . aux
    where aux 1 = [[]]
          aux n = map (n:) (concatMap aux (divisores3 n))
 
-- (divisores3 x) es la lista creciente de los divisores de x distintos
-- de x. Por ejemplo,
--    divisores3 12  ==  [1,2,3,4,6]
divisores3 :: Int -> [Int]
divisores3 x = 
    [y | y <- [1..a], x `mod` y == 0]
    where a = x `div` 2
 
-- 1ª definición de nCadenasDivisores
-- ==================================
 
nCadenasDivisores1 :: Int -> Int
nCadenasDivisores1 = length . cadenasDivisores
 
-- 2ª definición de nCadenasDivisores
-- ==================================
 
nCadenasDivisores2 :: Int -> Int
nCadenasDivisores2 1 = 1
nCadenasDivisores2 n = 
    sum [nCadenasDivisores2 x | x <- divisores n]

La sucesión de Sylvester

La sucesión de Sylvester es la sucesión que comienza en 2 y sus restantes términos se obtienen multiplicando los anteriores y sumándole 1.

Definir las funciones

   sylvester        :: Integer -> Integer
   graficaSylvester :: Integer -> Integer -> IO ()

tales que

  • (sylvester n) es el n-ésimo término de la sucesión de Sylvester. Por ejemplo,
     λ> [sylvester n | n <- [0..7]]
     [2,3,7,43,1807,3263443,10650056950807,113423713055421844361000443]
     λ> length (show (sylvester 25))
     6830085
  • (graficaSylvester d n) dibuja la gráfica de los d últimos dígitos de los n primeros términos de la sucesión de Sylvester. Por ejemplo,
    • (graficaSylvester 3 30) dibuja
      La_sucesion_de_Sylvester_(3,30)
    • (graficaSylvester 4 30) dibuja
      La_sucesion_de_Sylvester_(4,30)
    • (graficaSylvester 5 30) dibuja
      La_sucesion_de_Sylvester_(5,30)

Nota: Se puede usar programación dinámica para aumentar la eficiencia.

Soluciones

import Data.List               (genericIndex)
import Data.Array              ((!), array)
import Graphics.Gnuplot.Simple (plotList, Attribute (Key, PNG))
 
-- 1ª solución (por recursión)
-- ===========================
 
sylvester1 :: Integer -> Integer
sylvester1 0 = 2
sylvester1 n = 1 + product [sylvester1 k | k <- [0..n-1]]
 
-- 2ª solución (con programación dinámica)
-- =======================================
 
sylvester2 :: Integer -> Integer
sylvester2 n = v ! n where
  v = array (0,n) [(i,f i) | i <- [0..n]]
  f 0 = 2
  f m = 1 + product [v!k | k <- [0..m-1]]
 
-- 3ª solución
-- ===========
 
-- Observando que
--    S(n) = 1 + S(0)*S(1)*...*S(n-2)*S(n-1)
--         = 1 + (1 + S(0)*S(1)*...*S(n-2))*S(n-1) - S(n-1)
--         = 1 + S(n-1)*S(n-1) - S(n-1)
--         = 1 + S(n-1)^2 - S(n-1)
-- se obtiene la siguiente definición.
sylvester3 :: Integer -> Integer
sylvester3 0 = 2
sylvester3 n = 1 + x^2 - x
  where x = sylvester3 (n-1)
 
-- 4ª solución
-- ===========
 
sylvester4 :: Integer -> Integer
sylvester4 n = v ! n where
  v = array (0,n) [(i,f i) | i <- [0..n]]
  f 0 = 2
  f m = 1 + x^2 - x
    where x = v ! (m-1)
 
-- 5ª solución
-- ===========
 
sylvester5 :: Integer -> Integer
sylvester5 n = sucSylvester5 `genericIndex` n
 
sucSylvester5 :: [Integer]
sucSylvester5 = iterate (\x -> (x-1)*x+1) 2 
 
-- La comparación es
--    λ> length (show (sylvester1 23))
--    1707522
--    (6.03 secs, 4,090,415,704 bytes)
--    λ> length (show (sylvester2 23))
--    1707522
--    (0.33 secs, 109,477,296 bytes)
--    λ> length (show (sylvester3 23))
--    1707522
--    (0.35 secs, 109,395,136 bytes)
--    λ> length (show (sylvester4 23))
--    1707522
--    (0.33 secs, 109,402,440 bytes)
--    λ> length (show (sylvester5 23))
--    1707522
--    (0.30 secs, 108,676,256 bytes)
 
graficaSylvester :: Integer -> Integer -> IO ()
graficaSylvester d n =
  plotList [ Key Nothing
           , PNG ("La_sucesion_de_Sylvester_" ++ show (d,n) ++ ".png")
           ]
           [sylvester5 k `mod` (10^d) | k <- [0..n]]

Pandigitales primos

Un número con n dígitos es pandigital si contiene todos los dígitos del 1 a n exactamente una vez. Por ejemplo, 2143 es un pandigital con 4 dígitos y, además, es primo.

Definir la constante

   pandigitalesPrimos :: [Int]

tal que sus elementos son los números pandigitales, ordenados de mayor a menor. Por ejemplo,

   take 3 pandigitalesPrimos       ==  [7652413,7642513,7641253]
   2143 `elem` pandigitalesPrimos  ==  True
   length pandigitalesPrimos       ==  538

Soluciones

import Data.List (permutations, sort)
import Data.Char (intToDigit)
import Data.Numbers.Primes (isPrime, primes)
 
-- 1ª solución
-- ===========
 
pandigitalesPrimos :: [Int]
pandigitalesPrimos =
  concatMap nPandigitalesPrimos [9,8..1]
 
-- (nPandigitalesPrimos n) es la lista de los números pandigitales con n
-- dígitos, ordenada de mayor a menor. Por ejemplo,
--    nPandigitalesPrimos 4  ==  [4231,2341,2143,1423]
--    nPandigitalesPrimos 5  ==  []
nPandigitalesPrimos1 :: Int -> [Int]
nPandigitalesPrimos1 n = filter isPrime (pandigitales n)
 
-- Nota. La definición anterior se puede simplificar, ya que la suma de
-- los números de 1 a n es divisible por 3, entonces los números
-- pandigitales con n dígitos también lo son y, por tanto, no son primos.
nPandigitalesPrimos2 :: Int -> [Int]
nPandigitalesPrimos2 n 
  | sum [1..n] `mod` 3 == 0 = []
  | otherwise               = filter isPrime (pandigitales n)
 
-- Nota. La definición anterior se puede simplificar, ya que
--    ghci> [n | n <- [1..9], sum [1..n] `mod` 3 /= 0]
--    [1,4,7]
nPandigitalesPrimos :: Int -> [Int]
nPandigitalesPrimos n 
  | n `elem` [4,7] = filter isPrime (pandigitales n)
  | otherwise      = []
 
-- (pandigitales n) es la lista de los números pandigitales de n dígitos
-- ordenada de mayor a menor. Por ejemplo,
--    pandigitales 3  ==  [321,312,231,213,132,123]
pandigitales :: Int -> [Int]
pandigitales n = 
  reverse $ sort $ map digitosAentero (permutations [1..n])
 
-- (digitosAentero ns) es el número cuyos dígitos son ns. Por ejemplo,
--    digitosAentero [3,2,5]  ==  325
digitosAentero :: [Int] -> Int
digitosAentero = read . map intToDigit

Período de una lista

El período de una lista xs es la lista más corta ys tal que xs se puede obtener concatenando varias veces la lista ys. Por ejemplo, el período “abababab” es “ab” ya que “abababab” se obtiene repitiendo tres veces la lista “ab”.

Definir la función

   periodo :: Eq a => [a] -> [a]

tal que (periodo xs) es el período de xs. Por ejemplo,

   periodo "ababab"      ==  "ab"
   periodo "buenobueno"  ==  "bueno"
   periodo "oooooo"      ==  "o"
   periodo "sevilla"     ==  "sevilla"

Soluciones

import Data.List (isPrefixOf, inits)
 
-- 1ª solución
-- ===========
 
periodo1 :: Eq a => [a] -> [a]
periodo1 xs = take n xs
    where l = length xs
          n = head [m | m <- divisores l, 
                        concat (replicate (l `div` m) (take m xs)) == xs]
 
-- (divisores n) es la lista de los divisores de n. Por ejemplo,
--    divisores 96  ==  [1,2,3,4,6,8,12,16,24,32,48,96]
divisores :: Int -> [Int]
divisores n = [x | x <- [1..n], n `mod` x == 0]
 
-- 2ª solución
-- ===========
 
periodo2 :: Eq a => [a] -> [a]
periodo2 xs = take n xs
    where l = length xs
          n = head [m | m <- divisores l, 
                        xs `isPrefixOf` cycle (take m xs)]