Menu Close

Etiqueta: mod

Sucesión de sumas de dos números abundantes

Un número n es abundante si la suma de los divisores propios de n es mayor que n. El primer número abundante es el 12 (cuyos divisores propios son 1, 2, 3, 4 y 6 cuya suma es 16). Por tanto, el menor número que es la suma de dos números abundantes es el 24.

Definir la sucesión

   sumasDeDosAbundantes :: [Integer]

cuyos elementos son los números que se pueden escribir como suma de dos números abundantes. Por ejemplo,

   take 10 sumasDeDosAbundantes  ==  [24,30,32,36,38,40,42,44,48,50]

Soluciones

import Data.List (genericLength, group)
import Data.Numbers.Primes (primeFactors)
import Test.QuickCheck
 
-- 1ª solución
-- ===========
 
sumasDeDosAbundantes1 :: [Integer]
sumasDeDosAbundantes1 = [n | n <- [1..], esSumaDeDosAbundantes n]
 
-- (esSumaDeDosAbundantes n) se verifica si n es suma de dos números
-- abundantes. Por ejemplo,
--    esSumaDeDosAbundantes 24           ==  True
--    any esSumaDeDosAbundantes [1..22]  ==  False
esSumaDeDosAbundantes :: Integer -> Bool
esSumaDeDosAbundantes n = (not . null) [x | x <- xs, n-x `elem` xs]
  where xs = takeWhile (<n) abundantes
 
-- abundantes es la lista de los números abundantes. Por ejemplo,
--    take 10 abundantes  ==  [12,18,20,24,30,36,40,42,48,54]
abundantes :: [Integer]
abundantes = [n | n <- [2..], abundante n]
 
-- (abundante n) se verifica si n es abundante. Por ejemplo,
--    abundante 12  ==  True
--    abundante 11  ==  False
abundante :: Integer -> Bool
abundante n = sum (divisores n) > n
 
-- (divisores n) es la lista de los divisores propios de n. Por ejemplo,
--    divisores 12  ==  [1,2,3,4,6]
divisores :: Integer -> [Integer]
divisores n = [x | x <- [1..n `div` 2], n `mod` x == 0]
 
-- 2ª solución
-- ===========
 
sumasDeDosAbundantes2 :: [Integer]
sumasDeDosAbundantes2 = filter esSumaDeDosAbundantes2 [1..]
 
esSumaDeDosAbundantes2 :: Integer -> Bool
esSumaDeDosAbundantes2 n = (not . null) [x | x <- xs, n-x `elem` xs]
  where xs = takeWhile (<n) abundantes2
 
abundantes2 :: [Integer]
abundantes2 = filter abundante2 [2..]
 
abundante2 :: Integer -> Bool
abundante2 n = sumaDivisores n > n
 
sumaDivisores :: Integer -> Integer
sumaDivisores x =
  product [(p^(e+1)-1) `div` (p-1) | (p,e) <- factorizacion x] - x
 
-- (factorizacion x) es la lista de las bases y exponentes de la
-- descomposición prima de x. Por ejemplo,
--    factorizacion 600  ==  [(2,3),(3,1),(5,2)]
factorizacion :: Integer -> [(Integer,Integer)]
factorizacion = map primeroYlongitud . group . primeFactors
 
-- (primeroYlongitud xs) es el par formado por el primer elemento de xs
-- y la longitud de xs. Por ejemplo,
--    primeroYlongitud [3,2,5,7] == (3,4)
primeroYlongitud :: [a] -> (a,Integer)
primeroYlongitud (x:xs) =
  (x, 1 + genericLength xs)
 
-- Comprobación de equivalencia
-- ============================
 
-- La propiedad es
prop_sumasDeDosAbundantes :: Positive Int -> Bool
prop_sumasDeDosAbundantes (Positive n) =
  sumasDeDosAbundantes1 !! n == sumasDeDosAbundantes2 !! n
 
-- La comprobación es
--    λ> quickCheck prop_sumasDeDosAbundantes
--    +++ OK, passed 100 tests.
 
-- Comparación de eficiencia
-- =========================
 
-- La comparación es
--    λ> sumasDeDosAbundantes1 !! (2*10^3)
--    2887
--    (2.54 secs, 516,685,168 bytes)
--    λ> sumasDeDosAbundantes2 !! (2*10^3)
--    2887
--    (1.43 secs, 141,606,136 bytes)

El código se encuentra en GitHub.

Número de divisores

Definir la función

   numeroDivisores :: Integer -> Integer

tal que (numeroDivisores x) es el número de divisores de x. Por ejemplo,

   numeroDivisores 12  ==  6
   numeroDivisores 25  ==  3
   length (show (numeroDivisores (product [1..3*10^4])))  ==  1948

Soluciones

import Data.List (genericLength, group, inits)
import Data.Numbers.Primes (primeFactors)
import Test.QuickCheck
 
-- 1ª solución
-- ===========
 
numeroDivisores1 :: Integer -> Integer
numeroDivisores1 x =
  genericLength [y | y <- [1..x], x `mod` y == 0]
 
-- 2ª solución
-- ===========
 
numeroDivisores2 :: Integer -> Integer
numeroDivisores2 1 = 1
numeroDivisores2 x
  | esCuadrado x = 2 * genericLength [y | y <- [1..raizEntera x], x `mod` y == 0] - 1
  | otherwise    = 2 * genericLength [y | y <- [1..raizEntera x], x `mod` y == 0]
 
-- (raizEntera x) es el mayor número entero cuyo cuadrado es menor o
-- igual que x. Por ejemplo,
--    raizEntera 3  ==  1
--    raizEntera 4  ==  2
--    raizEntera 5  ==  2
--    raizEntera 8  ==  2
--    raizEntera 9  ==  3
raizEntera :: Integer -> Integer
raizEntera x = floor (sqrt (fromInteger x))
 
-- (esCuadrado x) se verifica si x es un cuadrado perfecto. Por ejemplo,
--    esCuadrado 9  ==  True
--    esCuadrado 7  ==  False
esCuadrado :: Integer -> Bool
esCuadrado x =
  x == (raizEntera x)^2
 
-- 3ª solución
-- ===========
 
numeroDivisores3 :: Integer -> Integer
numeroDivisores3 =
  genericLength . divisores
 
-- (divisores x) es la lista de los divisores de x. Por ejemplo,
--    divisores 12  ==  [1,3,2,6,4,12]
--    divisores 25  ==  [1,5,25]
divisores :: Integer -> [Integer]
divisores = map (product . concat)
          . productoCartesiano
          . map inits
          . group
          . primeFactors
 
-- (productoCartesiano xss) es el producto cartesiano de los conjuntos
-- xss. Por ejemplo,
--    λ> productoCartesiano [[1,3],[2,5],[6,4]]
--    [[1,2,6],[1,2,4],[1,5,6],[1,5,4],[3,2,6],[3,2,4],[3,5,6],[3,5,4]]
productoCartesiano :: [[a]] -> [[a]]
productoCartesiano []       = [[]]
productoCartesiano (xs:xss) =
  [x:ys | x <- xs, ys <- productoCartesiano xss]
 
-- 4ª solución
-- ===========
 
numeroDivisores4 :: Integer -> Integer
numeroDivisores4 = genericLength
                 . map (product . concat)
                 . sequence
                 . map inits
                 . group
                 . primeFactors
 
-- 5ª solución
-- ===========
 
numeroDivisores5 :: Integer -> Integer
numeroDivisores5 =
  product . map ((+1) . genericLength) . group . primeFactors
 
-- Comprobación de equivalencia
-- ============================
 
-- La propiedad es
prop_numeroDivisores :: Positive Integer -> Bool
prop_numeroDivisores (Positive x) =
  all (== numeroDivisores1 x)
      [ numeroDivisores2 x
      , numeroDivisores3 x
      , numeroDivisores4 x
      , numeroDivisores5 x]
 
-- La comprobación es
--    λ> quickCheck prop_numeroDivisores
--    +++ OK, passed 100 tests.
 
-- Comparación de eficiencia
-- =========================
 
-- La comparación es
--    λ> numeroDivisores1 (product [1..10])
--    270
--    (1.67 secs, 726,327,208 bytes)
--    λ> numeroDivisores2 (product [1..10])
--    270
--    (0.01 secs, 929,000 bytes)
--
--    λ> numeroDivisores2 (product [1..16])
--    5376
--    (2.10 secs, 915,864,664 bytes)
--    λ> numeroDivisores3 (product [1..16])
--    5376
--    (0.01 secs, 548,472 bytes)
--
--    λ> numeroDivisores3 (product [1..30])
--    2332800
--    (3.80 secs, 4,149,811,688 bytes)
--    λ> numeroDivisores4 (product [1..30])
--    2332800
--    (0.59 secs, 722,253,848 bytes)
--    λ> numeroDivisores5 (product [1..30])
--    2332800
--    (0.00 secs, 587,856 bytes)

El código se encuentra en GitHub.

Conjunto de divisores

Definir la función

   divisores :: Integer -> [Integer]

tal que (divisores x) es el conjunto de divisores de x. Por ejemplo,

  divisores 30  ==  [1,2,3,5,6,10,15,30]
  length (divisores (product [1..10]))  ==  270
  length (divisores (product [1..25]))  ==  340032

Soluciones

import Data.List (group, inits, nub, sort, subsequences)
import Data.Numbers.Primes (primeFactors)
import Test.QuickCheck
 
-- 1ª solución
-- ===========
 
divisores1 :: Integer -> [Integer]
divisores1 n = [x | x <- [1..n], n `rem` x == 0]
 
-- 2ª solución
-- ===========
 
divisores2 :: Integer -> [Integer]
divisores2 n = filter ((== 0) . mod n) [1..n]
 
-- 3ª solución
-- ===========
 
divisores3 :: Integer -> [Integer]
divisores3 =
  nub . sort . map product . subsequences . primeFactors
 
-- 4ª solución
-- ===========
 
divisores4 :: Integer -> [Integer]
divisores4 =
  sort
  . map (product . concat)
  . productoCartesiano
  . map inits
  . group
  . primeFactors
 
-- (productoCartesiano xss) es el producto cartesiano de los conjuntos
-- xss. Por ejemplo,
--    λ> productoCartesiano [[1,3],[2,5],[6,4]]
--    [[1,2,6],[1,2,4],[1,5,6],[1,5,4],[3,2,6],[3,2,4],[3,5,6],[3,5,4]]
productoCartesiano :: [[a]] -> [[a]]
productoCartesiano []       = [[]]
productoCartesiano (xs:xss) =
  [x:ys | x <- xs, ys <- productoCartesiano xss]
 
-- 5ª solución
-- ===========
 
divisores5 :: Integer -> [Integer]
divisores5 = sort
           . map (product . concat)
           . sequence
           . map inits
           . group
           . primeFactors
 
-- Comprobación de equivalencia
-- ============================
 
-- La propiedad es
prop_divisores :: Positive Integer -> Bool
prop_divisores (Positive n) =
  all (== divisores1 n)
      [ divisores2 n
      , divisores3 n
      , divisores4 n
      , divisores5 n
      ]
 
-- La comprobación es
--    λ> quickCheck prop_divisores
--    +++ OK, passed 100 tests.
 
-- Comparación de la eficiencia
-- ============================
 
--    λ> length (divisores (product [1..11]))
--    540
--    (12.51 secs, 7,983,499,736 bytes)
--    λ> length (divisores2 (product [1..11]))
--    540
--    (4.81 secs, 4,790,146,656 bytes)
--    λ> length (divisores3 (product [1..11]))
--    540
--    (0.10 secs, 107,339,848 bytes)
--    λ> length (divisores4 (product [1..11]))
--    540
--    (0.02 secs, 1,702,616 bytes)
--    λ> length (divisores5 (product [1..11]))
--    540
--    (0.02 secs, 1,205,824 bytes)
--
--    λ> length (divisores3 (product [1..14]))
--    2592
--    (7.89 secs, 9,378,454,912 bytes)
--    λ> length (divisores4 (product [1..14]))
--    2592
--    (0.03 secs, 9,426,528 bytes)
--    λ> length (divisores5 (product [1..14]))
--    2592
--    (0.02 secs, 6,636,608 bytes)
--    
--    λ> length (divisores4 (product [1..25]))
--    340032
--    (1.65 secs, 2,055,558,208 bytes)
--    λ> length (divisores5 (product [1..25]))
--    340032
--    (0.88 secs, 1,532,515,304 bytes)

El código se encuentra en GitHub.

Conjunto de primos relativos

Dos números enteros positivos son primos relativos si no tienen ningún factor primo en común; es decit, si 1 es su único divisor común. Por ejemplo, 6 y 35 son primos entre sí, pero 6 y 27 no lo son porque ambos son divisibles por 3.

Definir la función

   primosRelativos :: [Int] -> Bool

tal que (primosRelativos xs) se verifica si los elementos de xs son primos relativos dos a dos. Por ejemplo,

   primosRelativos [6,35]         ==  True
   primosRelativos [6,27]         ==  False
   primosRelativos [2,3,4]        ==  False
   primosRelativos [6,35,11]      ==  True
   primosRelativos [6,35,11,221]  ==  True
   primosRelativos [6,35,11,231]  ==  False

Soluciones

import Test.QuickCheck
import Data.List (delete, intersect)
import Data.Numbers.Primes (primeFactors, primes)
import qualified Data.Set as S (disjoint, fromList)
 
-- 1ª solución
-- ===========
 
primosRelativos1 :: [Int] -> Bool
primosRelativos1 []     = True
primosRelativos1 (x:xs) =
  and [sonPrimosRelativos1 x y | y <- xs] && primosRelativos1 xs
 
-- (sonPrimosRelativos x y) se verifica si x e y son primos
-- relativos. Por ejemplo,
--    sonPrimosRelativos1 6 35  ==  True
--    sonPrimosRelativos1 6 27  ==  False
sonPrimosRelativos1 :: Int -> Int -> Bool
sonPrimosRelativos1 x y =
  null (divisoresPrimos x `intersect` divisoresPrimos y)
 
-- (divisoresPrimos x) es la lista de los divisores primos de x. Por
-- ejemplo,
--    divisoresPrimos 600  ==  [2,2,2,3,5,5]
divisoresPrimos :: Int -> [Int]
divisoresPrimos 1 = []
divisoresPrimos x =
  y : divisoresPrimos (x `div` y)
  where y = menorDivisorPrimo x
 
-- (menorDivisorPrimo x) es el menor divisor primo de x. Por ejemplo,
--    menorDivisorPrimo 15  ==  3
--    menorDivisorPrimo 11  ==  11
menorDivisorPrimo :: Int -> Int
menorDivisorPrimo x =
  head [y | y <- [2..], x `mod` y == 0]
 
-- 2ª solución
-- ===========
 
primosRelativos2 :: [Int] -> Bool
primosRelativos2 []     = True
primosRelativos2 (x:xs) =
  all (sonPrimosRelativos1 x) xs && primosRelativos2 xs
 
-- 3ª solución
-- ===========
 
primosRelativos3 :: [Int] -> Bool
primosRelativos3 []     = True
primosRelativos3 (x:xs) =
  all (sonPrimosRelativos2 x) xs && primosRelativos3 xs
 
sonPrimosRelativos2 :: Int -> Int -> Bool
sonPrimosRelativos2 x y =
  null (primeFactors x `intersect` primeFactors y)
 
-- 4ª solución
-- ===========
 
primosRelativos4 :: [Int] -> Bool
primosRelativos4 []     = True
primosRelativos4 (x:xs) =
  all (sonPrimosRelativos3 x) xs && primosRelativos4 xs
 
sonPrimosRelativos3 :: Int -> Int -> Bool
sonPrimosRelativos3 x y =
  S.fromList (primeFactors x) `S.disjoint` S.fromList (primeFactors y)
 
-- 5ª solución
-- ===========
 
primosRelativos5 :: [Int] -> Bool
primosRelativos5 []     = True
primosRelativos5 (x:xs) =
  all (sonPrimosRelativos5 x) xs && primosRelativos5 xs
 
sonPrimosRelativos5 :: Int -> Int -> Bool
sonPrimosRelativos5 x y =
  gcd x y == 1
 
-- Comprobación de equivalencia
-- ============================
 
-- La propiedad es
prop_primosRelativos :: [Positive Int] -> Bool
prop_primosRelativos xs =
  all (== primosRelativos1 ys)
      [primosRelativos2 ys,
       primosRelativos3 ys,
       primosRelativos4 ys,
       primosRelativos5 ys]
  where ys = getPositive <$> xs
 
-- La comprobación es
--    λ> quickCheck prop_primosRelativos
--    +++ OK, passed 100 tests.
 
-- Comparación de eficiencia
-- =========================
 
-- La comparación es
--    λ> primosRelativos1 (take 120 primes)
--    True
--    (1.92 secs, 869,909,416 bytes)
--    λ> primosRelativos2 (take 120 primes)
--    True
--    (1.99 secs, 869,045,656 bytes)
--    λ> primosRelativos3 (take 120 primes)
--    True
--    (0.09 secs, 221,183,200 bytes)
--
--    λ> primosRelativos3 (take 600 primes)
--    True
--    (2.62 secs, 11,196,690,856 bytes)
--    λ> primosRelativos4 (take 600 primes)
--    True
--    (2.66 secs, 11,190,940,456 bytes)
--    λ> primosRelativos5 (take 600 primes)
--    True
--    (0.14 secs, 123,673,648 bytes)

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Números de Perrin

Los números de Perrin se definen por la elación de recurrencia

   P(n) = P(n - 2) + P(n - 3) si n > 2,

con los valores iniciales

   P(0) = 3, P(1) = 0 y P(2) = 2.

Definir la sucesión

   sucPerrin :: [Integer]

cuyos elementos son los números de Perrin. Por ejemplo,

   λ> take 15 sucPerrin
   [3,0,2,3,2,5,5,7,10,12,17,22,29,39,51]
   λ> length (show (sucPerrin !! (2*10^5)))
   24425

Comprobar con QuickCheck si se verifica la siguiente propiedad: para todo entero n > 1, el n-ésimo término de la sucesión de Perrin es divisible por n si y sólo si n es primo.

Soluciones

import Data.List (genericIndex, unfoldr)
import Data.Numbers.Primes (isPrime)
import Test.QuickCheck
 
-- 1ª solución
sucPerrin1 :: [Integer]
sucPerrin1 = 3 : 0 : 2 : zipWith (+) sucPerrin1 (tail sucPerrin1)
 
-- 2ª solución
sucPerrin2 :: [Integer]
sucPerrin2 = [x | (x,_,_) <- iterate op (3,0,2)]
  where op (a,b,c) = (b,c,a+b)
 
-- 3ª solución
sucPerrin3 :: [Integer]
sucPerrin3 =
  unfoldr (\(a, (b,c)) -> Just (a, (b,(c,a+b)))) (3,(0,2))
 
-- 4ª solución
sucPerrin4 :: [Integer]
sucPerrin4 = [vectorPerrin n ! n | n <- [0..]]
 
vectorPerrin :: Integer -> Array Integer Integer
vectorPerrin n = v where
  v = array (0,n) [(i,f i) | i <- [0..n]]
  f 0 = 3
  f 1 = 0
  f 2 = 2
  f i = v ! (i-2) + v ! (i-3)
 
-- Comparación de eficiencia
--    λ> length (show (sucPerrin1 !! (3*10^5)))
--    36638
--    (1.62 secs, 2,366,238,984 bytes)
--    λ> length (show (sucPerrin2 !! (3*10^5)))
--    36638
--    (1.40 secs, 2,428,701,384 bytes)
--    λ> length (show (sucPerrin3 !! (3*10^5)))
--    36638
--    (1.14 secs, 2,409,504,864 bytes)
--    λ> length (show (sucPerrin4 !! (3*10^5)))
--    36638
--    (1.78 secs, 2,585,400,776 bytes)
 
 
-- Usaremos la 3ª
sucPerrin :: [Integer]
sucPerrin = sucPerrin3
 
-- La propiedad es  
conjeturaPerrin :: Integer -> Property
conjeturaPerrin n =
  n > 1 ==>
  (perrin n `mod` n == 0) == isPrime n
 
-- (perrin n) es el n-ésimo término de la sucesión de Perrin. Por
-- ejemplo,
--    perrin 4  ==  2
--    perrin 5  ==  5
--    perrin 6  ==  5
perrin :: Integer -> Integer
perrin n = sucPerrin `genericIndex` n
 
-- La comprobación es
--    λ> quickCheck conjeturaPerrin
--    +++ OK, passed 100 tests.
 
-- Nota: Aunque QuickCheck no haya encontrado contraejemplos, la
-- propiedad no es cierta. Sólo lo es una de las implicaciones: si n es
-- primo, entonces el  n-ésimo término de la sucesión de Perrin es
-- divisible por n. La otra es falsa y los primeros contraejemplos son
--    271441, 904631, 16532714, 24658561, 27422714, 27664033, 46672291