Camino de máxima suma en una matriz

Los caminos desde el extremo superior izquierdo (posición (1,1)) hasta el extremo inferior derecho (posición (3,4)) en la matriz

moviéndose en cada paso una casilla hacia abajo o hacia la derecha, son los siguientes:

Las sumas de los caminos son 32, 41, 36, 40, 40, 35, 39, 34, 38 y 37, respectivamente. El camino de máxima suma es el segundo (1, 7, 12, 8, 4, 9) que tiene una suma de 41.

Definir la función

tal que (caminoMaxSuma m) es un camino de máxima suma en la matriz m desde el extremo superior izquierdo hasta el extremo inferior derecho, moviéndose en cada paso una casilla hacia abajo o hacia la derecha. Por ejemplo,

Nota: Se recomienda usar programación dinámica.

Soluciones

Máximo de las sumas de los caminos en una matriz

Los caminos desde el extremo superior izquierdo (posición (1,1)) hasta el extremo inferior derecho (posición (3,4)) en la matriz

moviéndose en cada paso una casilla hacia abajo o hacia la derecha, son los siguientes:

Las sumas de los caminos son 32, 41, 36, 40, 40, 35, 39, 34, 38 y 37, respectivamente. El máximo de las suma de los caminos es 41.

Definir la función

tal que (maximaSuma m) es el máximo de las sumas de los caminos en la matriz m desde el extremo superior izquierdo hasta el extremo inferior derecho, moviéndose en cada paso una casilla hacia abajo o hacia la derecha. Por ejemplo,

Nota: Se recomienda usar programación dinámica.

Soluciones

Caminos en una matriz

Los caminos desde el extremo superior izquierdo (posición (1,1)) hasta el extremo inferior derecho (posición (3,4)) en la matriz

moviéndose en cada paso una casilla hacia abajo o hacia la derecha, son los siguientes:

Definir la función

tal que (caminos m) es la lista de los caminos en la matriz m desde el extremo superior izquierdo hasta el extremo inferior derecho, moviéndose en cada paso una casilla hacia abajo o hacia la derecha. Por ejemplo,

Nota: Se recomienda usar programación dinámica.

Soluciones

Matriz de mínimas distancias

Definir las funciones

tales que

  • (mininasDistancias a) es la matriz de las mínimas distancias de cada elemento de a hasta alcanzar un 1 donde un paso es un movimiento hacia la izquierda, derecha, arriba o abajo. Por ejemplo,

  • (sumaMinimaDistanciasIdentidad n) es la suma de los elementos de la matriz de las mínimas distancias correspondiente a la matriz identidad de orden n. Por ejemplo,

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Diagonales invertidas

Definir la función

tal que (diagonalesInvertidas q) es la matriz obtenida invirtiendo el orden de los elementos de la diagonal principal y de la diagonal secundaria de q. Por ejemplo,

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Soluciones

Pensamiento

«No estamos muy contentos cuando nos vemos obligados a aceptar una verdad matemática en virtud de una complicada cadena de conclusiones formales y cálculos, que atravesamos a ciegas, eslabón por eslabón, sintiendo nuestro camino por el tacto. Queremos primero una visión general del objetivo y del camino; queremos entender la idea de la prueba, el contexto más profundo.»

Hermann Weyl.

Matriz dodecafónica

Como se explica en Create a Twelve-Tone Melody With a Twelve-Tone Matrix una matriz dodecafónica es una matriz de 12 filas y 12 columnas construidas siguiendo los siguientes pasos:

  • Se escribe en la primera fila una permutación de los números del 1 al 12. Por ejemplo,

  • Escribir la primera columna de forma que, para todo i (entre 2 y 12), a(i,1) es el número entre 1 y 12 que verifica la siguiente condición

Siguiendo con el ejemplo anterior, la matriz con la 1ª fila y la 1ª columna es

  • Escribir la segunda fila de forma que, para todo j (entre 2 y 12), a(j,2) es el número entre 1 y 12 que verifica la siguiente condición

Siguiendo con el ejemplo anterior, la matriz con la 1ª fila, 1ª columna y 2ª fila es

  • Las restantes filas se completan como la 2ª; es decir, para todo i (entre 3 y 12) y todo j (entre 2 y 12), a(i,j) es el número entre 1 y 12 que verifica la siguiente relación.

Siguiendo con el ejemplo anterior, la matriz dodecafónica es

Definir la función

tal que (matrizDodecafonica xs) es la matriz dodecafónica cuya primera fila es xs (que se supone que es una permutación de los números del 1 al 12). Por ejemplo,

Comprobar con QuickCheck para toda matriz dodecafónica D se verifican las siguientes propiedades:

  • todas las filas de D son permutaciones de los números 1 a 12,
  • todos los elementos de la diagonal de D son iguales y
  • la suma de todos los elementos de D es 936.

Nota: Este ejercicio ha sido propuesto por Francisco J. Hidalgo.

Soluciones

Pensamiento

Como el olivar,
mucho fruto lleva,
poca sombra da.

Antonio Machado

Matriz girada 180 grados

Definir la función

tal que (matrizGirada180 p) es la matriz obtenida girando 180 grados la matriz p. Por ejemplo,

Soluciones

Pensamiento

Bueno es recordar
las palabras viejas
que han de volver a sonar.

Antonio Machado

Matriz de mínimas distancias

Definir las funciones

tales que

  • (mininasDistancias a) es la matriz de las mínimas distancias de cada elemento de a hasta alcanzar un 1 donde un paso es un movimiento hacia la izquierda, derecha, arriba o abajo. Por ejemplo,

  • (sumaMinimaDistanciasIdentidad n) es la suma de los elementos de la matriz de las mínimas distancias correspondiente a la matriz identidad de orden n. Por ejemplo,

Soluciones

Pensamiento

La primavera ha venido.
Nadie sabe como ha sido.

Antonio Machado

Diagonales invertidas

Definir la función

tal que (diagonalesInvertidas q) es la matriz obtenida invirtiendo el
orden de los elementos de la diagonal principal y de la diagonal
secundaria de q. Por ejemplo,

Soluciones

Pensamiento

Despertad, cantores:
acaben los ecos,
empiecen las voces.

Antonio Machado

Camino de máxima suma en una matriz

Los caminos desde el extremo superior izquierdo (posición (1,1)) hasta el extremo inferior derecho (posición (3,4)) en la matriz

moviéndose en cada paso una casilla hacia abajo o hacia la derecha, son los siguientes:

Las sumas de los caminos son 32, 41, 36, 40, 40, 35, 39, 34, 38 y 37, respectivamente. El camino de máxima suma es el segundo (1, 7, 12, 8, 4, 9) que tiene una suma de 41.

Definir la función

tal que (caminoMaxSuma m) es un camino de máxima suma en la matriz m desde el extremo superior izquierdo hasta el extremo inferior derecho, moviéndose en cada paso una casilla hacia abajo o hacia la derecha. Por ejemplo,

Soluciones

Pensamiento

Caminante, no hay camino,
sino estelas en la mar.

Antonio Machado

El problema de las N torres

El problema de las N torres consiste en colocar N torres en un tablero con N filas y N columnas de forma que no haya dos torres en la misma fila ni en la misma columna.

Cada solución del problema de puede representar mediante una matriz con ceros y unos donde los unos representan las posiciones ocupadas por las torres y los ceros las posiciones libres. Por ejemplo,

representa una solución del problema de las 3 torres.

Definir las funciones

tales que
+ (torres n) es la lista de las soluciones del problema de las n torres. Por ejemplo,

  • (nTorres n) es el número de soluciones del problema de las n torres. Por ejemplo,

Soluciones

[schedule expon=’2018-06-12′ expat=»06:00″]

  • Las soluciones se pueden escribir en los comentarios hasta el 17 de abril.
  • El código se debe escribir entre una línea con <pre lang=»haskell»> y otra con </pre>

[/schedule]

[schedule on=’2018-06-12′ at=»06:00″]

[/schedule]

Mayor número de atracciones visitables

En el siguiente gráfico se representa en una cuadrícula el plano de Manhattan. Cada línea es una opción a seguir; el número representa las atracciones que se pueden visitar si se elige esa opción.

El turista entra por el extremo superior izquierda y sale por el extremo inferior derecha. Sólo puede moverse en las direcciones Sur y Este (es decir, hacia abajo o hacia la derecha).

Representamos el mapa mediante una matriz p tal que p(i,j) = (a,b), donde a = nº de atracciones si se va hacia el sur y b = nº de atracciones si se va al este. Además, ponemos un 0 en el valor del número de atracciones por un camino que no se puede elegir. De esta forma, el mapa anterior se representa por la matriz siguiente:

En este caso, si se hace el recorrido

el número de atracciones es

cuya suma es 34.

Definir la función

tal que (mayorNumeroV p) es el máximo número de atracciones que se pueden visitar en el plano representado por la matriz p. Por ejemplo, si se define la matriz anterior por

entonces

Para los siguientes ejemplos se define un generador de mapas

Entonces,

Soluciones

Camino de máxima suma en una matriz

Los caminos desde el extremo superior izquierdo (posición (1,1)) hasta el extremo inferior derecho (posición (3,4)) en la matriz

moviéndose en cada paso una casilla hacia abajo o hacia la derecha, son los siguientes:

Las sumas de los caminos son 32, 41, 36, 40, 40, 35, 39, 34, 38 y 37, respectivamente. El camino de máxima suma es el segundo (1, 7, 12, 8, 4, 9) que tiene una suma de 41.

Definir la función

tal que (caminoMaxSuma m) es un camino de máxima suma en la matriz m desde el extremo superior izquierdo hasta el extremo inferior derecho, moviéndose en cada paso una casilla hacia abajo o hacia la derecha. Por ejemplo,

Soluciones