Menu Close

Etiqueta: Matrices

Elementos de una matriz con algún vecino menor

Las matrices pueden representarse mediante tablas cuyos índices son pares de números naturales. Su tipo se define por

   type Matriz = Array (Int,Int) Int

Por ejemplo, la matriz

   |9 4 6 5|
   |8 1 7 3|
   |4 2 5 4|

se define por

   ej :: Matriz
   ej = listArray ((1,1),(3,4)) [9,4,6,5,8,1,7,3,4,2,5,4]

Los vecinos de un elemento son los que están a un paso en la misma fila, columna o diagonal. Por ejemplo, en la matriz anterior, el 1 tiene 8 vecinos (el 9, 4, 6, 8, 7, 4, 2 y 5) pero el 9 sólo tiene 3 vecinos (el 4, 8 y 1).

Definir la función

   algunoMenor :: Matriz -> [Int]

tal que (algunoMenor p) es la lista de los elementos de p que tienen algún vecino menor que él. Por ejemplo,

   algunoMenor ej == [9,4,6,5,8,7,4,2,5,4]

pues sólo el 1 y el 3 no tienen ningún vecino menor en la matriz.

Soluciones

import Data.Array (Array, (!), bounds, indices, inRange, listArray)
import Test.QuickCheck (Arbitrary, Gen, arbitrary, chooseInt, quickCheck,
                        vectorOf)
 
type Matriz = Array (Int,Int) Int
 
ej :: Matriz
ej = listArray ((1,1),(3,4)) [9,4,6,5,8,1,7,3,4,2,5,4]
 
type Pos = (Int,Int)
 
-- 1ª solución
-- ===========
 
algunoMenor1 :: Matriz -> [Int]
algunoMenor1 a =
  [a!p| p <- indices a,
        any (< a!p) (vecinos1 a p)]
 
-- (vecinos q p) es la lista de los vecinos en la matriz a de la
-- posición p. Por ejemplo,
--    vecinos1 ej (2,2)  ==  [9,4,6,8,7,4,2,5]
--    vecinos1 ej (1,1)  ==  [4,8,1]
vecinos1 :: Matriz -> Pos -> [Int]
vecinos1 a p =
  [a!p' | p' <- posicionesVecinos1 a p]
 
-- (posicionesVecinos a p) es la lista de las posiciones de los
-- vecino de p en la matriz a. Por ejemplo,
--    λ> posicionesVecinos1 3 3 (2,2)
--    [(1,1),(1,2),(1,3),(2,1),(2,3),(3,1),(3,2),(3,3)]
--    λ> posicionesVecinos1 3 3 (1,1)
--    [(1,2),(2,1),(2,2)]
posicionesVecinos1 :: Matriz -> Pos -> [Pos]
posicionesVecinos1 a (i,j) =
  [(i+di,j+dj) | (di,dj) <- [(-1,-1),(-1,0),(-1,1),
                             ( 0,-1),       ( 0,1),
                             ( 1,-1),( 1,0),( 1,1)],
                 inRange (bounds a) (i+di,j+dj)]
 
-- 2ª solución
-- ===========
 
algunoMenor2 :: Matriz -> [Int]
algunoMenor2 a =
  [a!p | p <- indices a,
         any (<a!p) (vecinos2 p)]
  where
    vecinos2 p =
      [a!p' | p' <- posicionesVecinos2 p]
    posicionesVecinos2 (i,j) =
      [(i+di,j+dj) | (di,dj) <- [(-1,-1),(-1,0),(-1,1),
                                 ( 0,-1),       ( 0,1),
                                 ( 1,-1),( 1,0),( 1,1)],
                     inRange (bounds a) (i+di,j+dj)]
 
-- 3ª solución
-- ===========
 
algunoMenor3 :: Matriz -> [Int]
algunoMenor3 a =
  [a!p | p <- indices a,
         any (<a!p) (vecinos3 p)]
  where
    vecinos3 p =
      [a!p' | p' <- posicionesVecinos3 p]
    posicionesVecinos3 (i,j) =
      [(i',j') | i' <- [i-1..i+1],
                 j' <- [j-1..j+1],
                 (i',j') /= (i,j),
                 inRange (bounds a) (i',j')]
 
-- 4ª solución
-- ===========
 
algunoMenor4 :: Matriz -> [Int]
algunoMenor4 a =
  [a!p | p <- indices a,
         any (<a!p) (vecinos4 p)]
  where
    vecinos4 p =
      [a!p' | p' <- posicionesVecinos4 p]
    posicionesVecinos4 (i,j) =
      [(i',j') | i' <- [max 1 (i-1)..min m (i+1)],
                 j' <- [max 1 (j-1)..min n (j+1)],
                 (i',j') /= (i,j)]
      where (_,(m,n)) = bounds a
 
 
-- 5ª solución
-- ===========
 
algunoMenor5 :: Matriz -> [Int]
algunoMenor5 a =
  [a!p | p <- indices a,
         any (<a!p) (vecinos5 p)]
  where
    vecinos5 p =
      [a!p' | p' <- posicionesVecinos5 p]
    posicionesVecinos5 (i,j) =
      [(i-1,j-1) | i > 1, j > 1] ++
      [(i-1,j)   | i > 1]        ++
      [(i-1,j+1) | i > 1, j < n] ++
      [(i,j-1)   | j > 1]        ++
      [(i,j+1)   | j < n]        ++
      [(i+1,j-1) | i < m, j > 1] ++
      [(i+1,j)   | i < m]        ++
      [(i+1,j+1) | i < m, j < n]
      where (_,(m,n)) = bounds a
 
-- ---------------------------------------------------------------------
 
-- Comprobación de equivalencia
-- ============================
 
newtype Matriz2 = M Matriz
  deriving Show
 
-- Generador de matrices arbitrarias. Por ejemplo,
--    λ> generate matrizArbitraria
--    M (array ((1,1),(3,4))
--             [((1,1),18),((1,2),6), ((1,3),-23),((1,4),-13),
--              ((2,1),-2),((2,2),22),((2,3),-25),((2,4),-5),
--              ((3,1),2), ((3,2),16),((3,3),-15),((3,4),7)])
matrizArbitraria :: Gen Matriz2
matrizArbitraria = do
  m  <- chooseInt (1,10)
  n  <- chooseInt (1,10)
  xs <- vectorOf (m*n) arbitrary
  return (M (listArray ((1,1),(m,n)) xs))
 
-- Matriz es una subclase de Arbitrary.
instance Arbitrary Matriz2 where
  arbitrary = matrizArbitraria
 
-- La propiedad es
prop_algunoMenor :: Matriz2 -> Bool
prop_algunoMenor (M p) =
  all (== algunoMenor1 p)
      [algunoMenor2 p,
       algunoMenor3 p,
       algunoMenor4 p,
       algunoMenor5 p]
 
-- La comprobación es
--    λ> quickCheck prop_algunoMenor
--    +++ OK, passed 100 tests.
 
-- Comparación de eficiencia
-- =========================
 
-- La comparación es
--    λ> maximum (algunoMenor1 (listArray ((1,1),(600,800)) [0..]))
--    479999
--    (2.20 secs, 1,350,075,240 bytes)
--    λ> maximum (algunoMenor2 (listArray ((1,1),(600,800)) [0..]))
--    479999
--    (2.24 secs, 1,373,139,968 bytes)
--    λ> maximum (algunoMenor3 (listArray ((1,1),(600,800)) [0..]))
--    479999
--    (2.08 secs, 1,200,734,112 bytes)
--    λ> maximum (algunoMenor4 (listArray ((1,1),(600,800)) [0..]))
--    479999
--    (2.76 secs, 1,287,653,136 bytes)
--    λ> maximum (algunoMenor5 (listArray ((1,1),(600,800)) [0..]))
--    479999
--    (1.67 secs, 953,937,600 bytes)

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Ampliación de matrices por columnas

Las matrices enteras se pueden representar mediante tablas con índices enteros:

   type Matriz = Array (Int,Int) Int

Definir la función

   ampliaColumnas :: Matriz -> Matriz -> Matriz

tal que (ampliaColumnas p q) es la matriz construida añadiendo las columnas de la matriz q a continuación de las de p (se supone que tienen el mismo número de filas). Por ejemplo, si p y q representa las dos primeras matrices, entonces (ampliaColumnas p q) es la tercera

   |0 1|    |4 5 6|    |0 1 4 5 6|
   |2 3|    |7 8 9|    |2 3 7 8 9|

En Haskell, se definen las dos primeras matrices se definen por

   ej1 = listArray ((1,1),(2,2)) [0..3]
   ej2 = listArray ((1,1),(2,3)) [4..9]

y el cálculo de la tercera es

   λ> ampliaColumnas ej1 ej2
   array ((1,1),(2,5)) [((1,1),0),((1,2),1),((1,3),4),((1,4),5),((1,5),6),
                        ((2,1),2),((2,2),3),((2,3),7),((2,4),8),((2,5),9)]
   λ> elems (ampliaColumnas ej1 ej2)
   [0,1,4,5,6,2,3,7,8,9]

Soluciones

import Data.Array (Array, (!), array, bounds, elems, listArray)
import Data.Matrix (Matrix, (<|>), fromList, ncols, nrows, toList)
import Test.QuickCheck
 
type Matriz = Array (Int,Int) Int
 
ej1, ej2 :: Matriz
ej1 = listArray ((1,1),(2,2)) [0..3]
ej2 = listArray ((1,1),(2,3)) [4..9]
 
-- 1ª solución
-- ===========
 
ampliaColumnas1 :: Matriz -> Matriz -> Matriz
ampliaColumnas1 p1 p2 =
  array ((1,1),(m,n1+n2)) [((i,j), f i j) | i <- [1..m], j <- [1..n1+n2]]
    where ((_,_),(m,n1)) = bounds p1
          ((_,_),(_,n2)) = bounds p2
          f i j | j <= n1   = p1!(i,j)
                | otherwise = p2!(i,j-n1)
 
-- 2ª solución
-- ===========
 
ampliaColumnas2 :: Matriz -> Matriz -> Matriz
ampliaColumnas2 p1 p2 =
  matriz (matrix p1 <|> matrix p2)
 
-- (matrix p) es la matriz p en el formatao de Data.Matrix. Por ejemplo,
--    λ> ej1
--    array ((1,1),(2,2)) [((1,1),0),((1,2),1),((2,1),2),((2,2),3)]
--    λ> matrix ej1
--    ┌     ┐
--    │ 0 1 │
--    │ 2 3 │
--    └     ┘
--    λ> matrix (ampliaColumnas1 ej1 ej2)
--    ┌           ┐
--    │ 0 1 4 5 6 │
--    │ 2 3 7 8 9 │
--    └           ┘
matrix :: Matriz -> Matrix Int
matrix p = fromList m n (elems p)
  where (_,(m,n)) = bounds p
 
-- (matriz p) es la matriz p en el formato de Data.Array. Por ejemplo,
--    λ> matriz (fromList 2 3 [1..])
--    array ((1,1),(2,3)) [((1,1),1),((1,2),2),((1,3),3),((2,1),4),((2,2),5),((2,3),6)]
matriz :: Matrix Int -> Matriz
matriz p = listArray ((1,1),(nrows p,ncols p)) (toList p)
 
-- Comprobación de equivalencia
-- ============================
 
data ParMatrices = P Matriz Matriz
  deriving Show
 
-- parMatricesArbitrario es un generador de pares de matrices con el
-- mismo número de filas.
parMatricesArbitrario :: Gen ParMatrices
parMatricesArbitrario = do
  m  <- arbitrary `suchThat` (> 0)
  n1 <- arbitrary `suchThat` (> 0)
  n2 <- arbitrary `suchThat` (> 0)
  xs <- vector (m * n1)
  ys <- vector (m * n2)
  return (P (listArray ((1,1),(m,n1)) xs)
            (listArray ((1,1),(m,n2)) ys))
 
-- ParMatrices es una subclase de Arbitrary
instance Arbitrary ParMatrices where
  arbitrary = parMatricesArbitrario
 
-- La propiedad es
prop_ampliaColumna :: ParMatrices -> Bool
prop_ampliaColumna (P p q) =
  ampliaColumnas1 p q == ampliaColumnas2 p q
 
-- La comprobación es
--    λ> quickCheck prop_ampliaColumna
--    +++ OK, passed 100 tests.
 
-- Comparación de eficiencia
-- =========================
 
-- La comparación es
--    λ> let p = listArray ((1,1),(10^3,10^3)) [1..] in maximum (ampliaColumnas1 p p)
--    1000000
--    (2.04 secs, 1,562,652,704 bytes)
--    λ> let p = listArray ((1,1),(10^3,10^3)) [1..] in maximum (ampliaColumnas2 p p)
--    1000000
--    (0.69 secs, 738,508,624 bytes)

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Matrices de Toepliz

Una matriz de Toeplitz es una matriz cuadrada que es constante a lo largo de las diagonales paralelas a la diagonal principal. Por ejemplo,

   |2 5 1 6|       |2 5 1 6|
   |4 2 5 1|       |4 2 6 1|
   |7 4 2 5|       |7 4 2 5|
   |9 7 4 2|       |9 7 4 2|

la primera es una matriz de Toeplitz y la segunda no lo es.

Las anteriores matrices se pueden definir por

   ej1, ej2 :: Array (Int,Int) Int
   ej1 = listArray ((1,1),(4,4)) [2,5,1,6,4,2,5,1,7,4,2,5,9,7,4,2]
   ej2 = listArray ((1,1),(4,4)) [2,5,1,6,4,2,6,1,7,4,2,5,9,7,4,2]

Definir la función

   esToeplitz :: Eq a => Array (Int,Int) a -> Bool

tal que (esToeplitz p) se verifica si la matriz p es de Toeplitz. Por ejemplo,

   esToeplitz ej1  ==  True
   esToeplitz ej2  ==  False

Soluciones

import Data.Array (Array, (!), bounds, listArray)
 
ej1, ej2 :: Array (Int,Int) Int
ej1 = listArray ((1,1),(4,4)) [2,5,1,6,4,2,5,1,7,4,2,5,9,7,4,2]
ej2 = listArray ((1,1),(4,4)) [2,5,1,6,4,2,6,1,7,4,2,5,9,7,4,2]
 
-- 1ª solución
-- ===========
 
esToeplitz1 :: Eq a => Array (Int,Int) a -> Bool
esToeplitz1 p =
  esCuadrada p &&
  all todosIguales (diagonalesPrincipales p)
 
-- (esCuadrada p) se verifica si la matriz p es cuadrada. Por ejemplo,
--    esCuadrada (listArray ((1,1),(4,4)) [1..])  ==  True
--    esCuadrada (listArray ((1,1),(3,4)) [1..])  ==  False
esCuadrada :: Eq a => Array (Int,Int) a -> Bool
esCuadrada p = m == n
  where (_,(m,n)) = bounds p
 
-- (diagonalesPrincipales p) es la lista de las diagonales principales
-- de p. Por ejemplo,
--    λ> diagonalesPrincipales ej1
--    [[2,2,2,2],[5,5,5],[1,1],[6],[2,2,2,2],[4,4,4],[7,7],[9]]
--    λ> diagonalesPrincipales ej2
--    [[2,2,2,2],[5,6,5],[1,1],[6],[2,2,2,2],[4,4,4],[7,7],[9]]
diagonalesPrincipales :: Array (Int,Int) a -> [[a]]
diagonalesPrincipales p =
  [[p ! i |i <- is] | is <- posicionesDiagonalesPrincipales m n]
  where (_,(m,n)) = bounds p
 
-- (posicionesDiagonalesPrincipales m n) es la lista de las
-- posiciones de las diagonales principales de una matriz con m filas y
-- n columnas. Por ejemplo,
--   λ> mapM_ print (posicionesDiagonalesPrincipales 3 4)
--   [(3,1)]
--   [(2,1),(3,2)]
--   [(1,1),(2,2),(3,3)]
--   [(1,2),(2,3),(3,4)]
--   [(1,3),(2,4)]
--   [(1,4)]
--   λ> mapM_ print (posicionesDiagonalesPrincipales 4 4)
--   [(4,1)]
--   [(3,1),(4,2)]
--   [(2,1),(3,2),(4,3)]
--   [(1,1),(2,2),(3,3),(4,4)]
--   [(1,2),(2,3),(3,4)]
--   [(1,3),(2,4)]
--   [(1,4)]
--   λ> mapM_ print (posicionesDiagonalesPrincipales 4 3)
--   [(4,1)]
--   [(3,1),(4,2)]
--   [(2,1),(3,2),(4,3)]
--   [(1,1),(2,2),(3,3)]
--   [(1,2),(2,3)]
--   [(1,3)]
posicionesDiagonalesPrincipales :: Int -> Int -> [[(Int, Int)]]
posicionesDiagonalesPrincipales m n =
  [zip [i..m] [1..n] | i <- [m,m-1..1]] ++
  [zip [1..m] [j..n] | j <- [2..n]]
 
-- (todosIguales xs) se verifica si todos los elementos de xs son
-- iguales. Por ejemplo,
--    todosIguales [5,5,5]  ==  True
--    todosIguales [5,4,5]  ==  False
todosIguales :: Eq a => [a] -> Bool
todosIguales []     = True
todosIguales (x:xs) = all (== x) xs
 
-- 2ª solución
-- ===========
 
esToeplitz2 :: Eq a => Array (Int,Int) a -> Bool
esToeplitz2 p = m == n &&
               and [p!(i,j) == p!(i+1,j+1) |
                    i <- [1..n-1], j <- [1..n-1]]
  where (_,(m,n)) = bounds p
 
-- Comparación de eficiencia
-- =========================
 
-- La comparación es
--    λ> esToeplitz1 (listArray ((1,1),(2*10^3,2*10^3)) (repeat 1))
--    True
--    (2.26 secs, 2,211,553,888 bytes)
--    λ> esToeplitz2 (listArray ((1,1),(2*10^3,2*10^3)) (repeat 1))
--    True
--    (4.26 secs, 3,421,651,032 bytes)

El código se encuentra en GitHub.

Diagonales principales de una matriz

La lista de las diagonales principales de la matriz

   1  2  3  4
   5  6  7  8
   9 10 11 12

es

   [[9],[5,10],[1,6,11],[2,7,12],[3,8],[4]]

Definir la función

   diagonalesPrincipales :: Array (Int,Int) a -> [[a]]

tal que (diagonalesPrincipales p) es la lista de las diagonales principales de p. Por ejemplo,

   λ> diagonalesPrincipales (listArray ((1,1),(3,4)) [1..12])
   [[9],[5,10],[1,6,11],[2,7,12],[3,8],[4]]

Soluciones

import Data.Array (Array, (!), bounds, listArray)
import Test.QuickCheck
 
-- 1ª solución
-- ===========
 
diagonalesPrincipales1 :: Array (Int,Int) a -> [[a]]
diagonalesPrincipales1 p =
  [[p ! ij | ij <- ijs] | ijs <- posicionesDiagonalesPrincipales1 m n]
  where (_,(m,n)) = bounds p
 
posicionesDiagonalesPrincipales1 :: Int -> Int -> [[(Int, Int)]]
posicionesDiagonalesPrincipales1 m n =
  [extension ij | ij <- iniciales]
  where iniciales = [(i,1) | i <- [m,m-1..2]] ++ [(1,j) | j <- [1..n]]
        extension (i,j) = [(i+k,j+k) | k <- [0..min (m-i) (n-j)]]
 
-- 2ª solución
-- ===========
 
diagonalesPrincipales2 :: Array (Int,Int) a -> [[a]]
diagonalesPrincipales2 p =
  [[p ! ij | ij <- ijs] | ijs <- posicionesDiagonalesPrincipales2 m n]
  where (_,(m,n)) = bounds p
 
posicionesDiagonalesPrincipales2 :: Int -> Int -> [[(Int, Int)]]
posicionesDiagonalesPrincipales2 m n =
  [zip [i..m] [1..n] | i <- [m,m-1..1]] ++
  [zip [1..m] [j..n] | j <- [2..n]]
 
-- Equivalencia de las definiciones
-- ================================
 
-- La propiedad es
prop_diagonalesPrincipales :: Positive Int -> Positive Int -> Bool
prop_diagonalesPrincipales (Positive m) (Positive n) =
  diagonalesPrincipales1 p == diagonalesPrincipales2 p
  where p = listArray ((1,1),(m,n)) [1..]
 
-- La comprobación es
--    λ> quickCheck prop_diagonalesPrincipales
--    +++ OK, passed 100 tests.
 
-- Comparación de eficiencia
-- =========================
 
-- La comparación es
--    λ> length (diagonalesPrincipales1 (listArray ((1,1),(10^4,10^4)) [1..]))
--    19999
--    (6.90 secs, 8,010,369,224 bytes)
--    λ> length (diagonalesPrincipales2 (listArray ((1,1),(10^4,10^4)) [1..]))
--    19999
--    (6.78 secs, 8,008,289,224 bytes)

El código se encuentra en GitHub

Posiciones de las diagonales principales

Las posiciones de una matriz con 3 filas y 4 columnas son

   (1,1) (1,2) (1,3) (1,4)
   (2,1) (2,2) (2,3) (2,4)
   (3,1) (3,2) (3,3) (3,4)

La posiciones de sus 6 diagonales principales son

  [(3,1)]
  [(2,1),(3,2)]
  [(1,1),(2,2),(3,3)]
  [(1,2),(2,3),(3,4)]
  [(1,3),(2,4)]
  [(1,4)]

Definir la función

   posicionesDiagonalesPrincipales :: Int -> Int -> [[(Int, Int)]]

tal que (posicionesdiagonalesprincipales m n) es la lista de las posiciones de las diagonales principales de una matriz con m filas y n columnas. Por ejemplo,

  λ> mapM_ print (posicionesDiagonalesPrincipales 3 4)
  [(3,1)]
  [(2,1),(3,2)]
  [(1,1),(2,2),(3,3)]
  [(1,2),(2,3),(3,4)]
  [(1,3),(2,4)]
  [(1,4)]
  λ> mapM_ print (posicionesDiagonalesPrincipales 4 4)
  [(4,1)]
  [(3,1),(4,2)]
  [(2,1),(3,2),(4,3)]
  [(1,1),(2,2),(3,3),(4,4)]
  [(1,2),(2,3),(3,4)]
  [(1,3),(2,4)]
  [(1,4)]
  λ> mapM_ print (posicionesDiagonalesPrincipales 4 3)
  [(4,1)]
  [(3,1),(4,2)]
  [(2,1),(3,2),(4,3)]
  [(1,1),(2,2),(3,3)]
  [(1,2),(2,3)]
  [(1,3)]

Soluciones

import Test.QuickCheck
 
-- 1ª solución
-- ===========
 
posicionesDiagonalesPrincipales1 :: Int -> Int -> [[(Int, Int)]]
posicionesDiagonalesPrincipales1 m n =
  [extension ij | ij <- iniciales]
  where iniciales = [(i,1) | i <- [m,m-1..2]] ++ [(1,j) | j <- [1..n]]
        extension (i,j) = [(i+k,j+k) | k <- [0..min (m-i) (n-j)]]
 
-- 2ª solución
-- ===========
 
posicionesDiagonalesPrincipales2 :: Int -> Int -> [[(Int, Int)]]
posicionesDiagonalesPrincipales2 m n =
  [zip [i..m] [1..n] | i <- [m,m-1..1]] ++
  [zip [1..m] [j..n] | j <- [2..n]]
 
-- Equivalencia de las definiciones
-- ================================
 
-- La propiedad es
prop_posicionesDiagonalesPrincipales :: Positive Int -> Positive Int -> Bool
prop_posicionesDiagonalesPrincipales (Positive m) (Positive n) =
  posicionesDiagonalesPrincipales1 m n ==
  posicionesDiagonalesPrincipales2 m n
 
-- La comprobación es
--   λ> quickCheck prop_posicionesDiagonalesPrincipales
--   +++ OK, passed 100 tests.
 
-- Comparación de eficiencia
-- =========================
 
-- La comparación es
--   λ> length (posicionesDiagonalesPrincipales1 (10^7) (10^6))
--   10999999
--   (6.14 secs, 3,984,469,440 bytes)
--   λ> length (posicionesDiagonalesPrincipales2 (10^7) (10^6))
--   10999999
--   (3.07 secs, 2,840,469,440 bytes)

El código se encuentra en GitHub

Producto de los elementos de la diagonal principal

Las matrices se pueden representar como lista de listas de la misma longitud, donde cada uno de sus elementos representa una fila de la matriz.

Definir la función

   productoDiagonalPrincipal :: Num a => [[a]] -> a

tal que (productoDiagonalPrincipal xss) es el producto de los elementos de la diagonal principal de la matriz cuadrada xss. Por ejemplo,

   productoDiagonal1 [[3,5,2],[4,7,1],[6,9,8]]  ==  168
   productoDiagonal1 (replicate 5 [1..5])       ==  120
   length (show (productoDiagonal3 (replicate 30000 [1..30000])))  ==  121288

Soluciones

import Data.List (genericReplicate)
 
-- 1ª solución
-- ===========
 
productoDiagonal1 :: Num a => [[a]] -> a
productoDiagonal1 xss = product (diagonal1 xss)
 
-- (diagonal1 xss) es la diagonal de la matriz xss. Por ejemplo,
--    diagonal1 [[3,5,2],[4,7,1],[6,9,0]]  ==  [3,7,0]
--    diagonal1 [[3,5],[4,7],[6,9]]        ==  [3,7]
--    diagonal1 [[3,5,2],[4,7,1]]          ==  [3,7]
diagonal1 :: [[a]] -> [a]
diagonal1 ((x:_):xss) = x : diagonal1 (map tail xss)
diagonal1 _           = []
 
-- 2ª solución
-- ===========
 
productoDiagonal2 :: Num a => [[a]] -> a
productoDiagonal2 = product . diagonal1
 
-- 3ª solución
-- ===========
 
productoDiagonal3 :: Num a => [[a]] -> a
productoDiagonal3 = product . diagonal3
 
diagonal3 :: [[a]] -> [a]
diagonal3 xss = [xs !! k | (xs,k) <- zip xss [0..n]]
  where n = length (head xss) - 1
 
-- 4ª solución
-- ===========
 
productoDiagonal4 :: Num a => [[a]] -> a
productoDiagonal4 []          = 1
productoDiagonal4 [[]]        = 1
productoDiagonal4 ((x:_):xss) = x * productoDiagonal4 (map tail xss)
 
-- 5ª solución
-- ===========
 
productoDiagonal5 :: Num a => [[a]] -> a
productoDiagonal5 xss = product (zipWith (!!) xss [0..k])
  where m = length xss
        n = length (head xss)
        k = min m n - 1
 
-- Comparación de eficiencia
-- =========================
 
ejemplo :: Integer -> [[Integer]]
ejemplo n = genericReplicate n [1..n]
 
-- La comparación es
--    λ> length (show (productoDiagonal1 (ejemplo 7000)))
--    23878
--    (1.23 secs, 3,396,129,424 bytes)
--    λ> length (show (productoDiagonal2 (ejemplo 7000)))
--    23878
--    (0.94 secs, 3,396,127,680 bytes)
--    λ> length (show (productoDiagonal3 (ejemplo 7000)))
--    23878
--    (0.09 secs, 44,841,864 bytes)
--    λ> length (show (productoDiagonal4 (ejemplo 7000)))
--    23878
--    (0.96 secs, 3,614,137,840 bytes)
--    λ> length (show (productoDiagonal5 (ejemplo 7000)))
--    23878
--    (0.07 secs, 44,168,984 bytes)
--
--    λ> length (show (productoDiagonal3 (ejemplo 70000)))
--    308760
--    (8.26 secs, 5,359,752,408 bytes)
--    λ> length (show (productoDiagonal5 (ejemplo 70000)))
--    308760
--    (9.34 secs, 5,353,035,656 bytes)

El código se encuentra en GitHub.

Camino de máxima suma en una matriz

Los caminos desde el extremo superior izquierdo (posición (1,1)) hasta el extremo inferior derecho (posición (3,4)) en la matriz

   (  1  6 11  2 )
   (  7 12  3  8 )
   (  3  8  4  9 )

moviéndose en cada paso una casilla hacia abajo o hacia la derecha, son los siguientes:

   1, 7,  3, 8, 4, 9
   1, 7, 12, 8, 4, 9
   1, 7, 12, 3, 4, 9
   1, 7, 12, 3, 8, 9
   1, 6, 12, 8, 4, 9
   1, 6, 12, 3, 4, 9
   1, 6, 12, 3, 8, 9
   1, 6, 11, 3, 4, 9
   1, 6, 11, 3, 8, 9
   1, 6, 11, 2, 8, 9

Las sumas de los caminos son 32, 41, 36, 40, 40, 35, 39, 34, 38 y 37, respectivamente. El camino de máxima suma es el segundo (1, 7, 12, 8, 4, 9) que tiene una suma de 41.

Definir la función

   caminoMaxSuma :: Matrix Int -> [Int]

tal que (caminoMaxSuma m) es un camino de máxima suma en la matriz m desde el extremo superior izquierdo hasta el extremo inferior derecho, moviéndose en cada paso una casilla hacia abajo o hacia la derecha. Por ejemplo,

   λ> caminoMaxSuma (fromLists [[1,6,11,2],[7,12,3,8],[3,8,4,9]])
   [1,7,12,8,4,9]
   λ> sum (caminoMaxSuma (fromList 800 800 [1..]))
   766721999

Nota: Se recomienda usar programación dinámica.

Soluciones

import Data.Matrix
 
-- 1ª definición
-- =============
 
caminoMaxSuma1 :: Matrix Int -> [Int]
caminoMaxSuma1 m =
  head [c | c <- cs, sum c == k] 
  where cs = caminos1 m
        k  = maximum (map sum cs)
 
caminos1 :: Matrix Int -> [[Int]]
caminos1 m =
  map reverse (caminos1Aux m (nf,nc))
  where nf = nrows m
        nc = ncols m
 
-- (caminos1Aux p x) es la lista de los caminos invertidos en la matriz p
-- desde la posición (1,1) hasta la posición x. Por ejemplo,
caminos1Aux :: Matrix Int -> (Int,Int) -> [[Int]]
caminos1Aux m (1,1) = [[m!(1,1)]]
caminos1Aux m (1,j) = [[m!(1,k) | k <- [j,j-1..1]]]
caminos1Aux m (i,1) = [[m!(k,1) | k <- [i,i-1..1]]]
caminos1Aux m (i,j) = [m!(i,j) : xs
                      | xs <- caminos1Aux m (i,j-1) ++
                              caminos1Aux m (i-1,j)]
 
-- 2ª definición
-- =============
 
caminoMaxSuma2 :: Matrix Int -> [Int]
caminoMaxSuma2 m =
  head [c | c <- cs, sum c == k] 
  where cs = caminos2 m
        k  = maximum (map sum cs)
 
caminos2 :: Matrix Int -> [[Int]]
caminos2 m =
  map reverse (matrizCaminos m ! (nrows m, ncols m))
 
matrizCaminos :: Matrix Int -> Matrix [[Int]]
matrizCaminos m = q
  where
    q = matrix (nrows m) (ncols m) f
    f (1,y) = [[m!(1,z) | z <- [y,y-1..1]]]
    f (x,1) = [[m!(z,1) | z <- [x,x-1..1]]]
    f (x,y) = [m!(x,y) : cs | cs <- q!(x-1,y) ++ q!(x,y-1)]  
 
-- 3ª definición (con programación dinámica)
-- =========================================
 
caminoMaxSuma3 :: Matrix Int -> [Int]
caminoMaxSuma3 m = reverse (snd (q ! (nf,nc)))
  where nf = nrows m
        nc = ncols m
        q  = caminoMaxSumaAux m
 
caminoMaxSumaAux :: Matrix Int -> Matrix (Int,[Int])
caminoMaxSumaAux m = q 
  where
    nf = nrows m
    nc = ncols m
    q  = matrix nf nc f
      where
        f (1,1) = (m!(1,1),[m!(1,1)])
        f (1,j) = (k + m!(1,j), m!(1,j):xs)
          where (k,xs) = q!(1,j-1)
        f (i,1) = (k + m!(i,1), m!(i,1):xs)
          where (k,xs) = q!(i-1,1)        
        f (i,j) | k1 > k2   = (k1 + m!(i,j), m!(i,j):xs)
                | otherwise = (k2 + m!(i,j), m!(i,j):ys)
          where (k1,xs) = q!(i,j-1)
                (k2,ys) = q!(i-1,j)
 
-- Comparación de eficiencia
-- -------------------------
 
--    λ> length (caminoMaxSuma1 (fromList 11 11 [1..]))
--    21
--    (10.00 secs, 1,510,120,328 bytes)
--    λ> length (caminoMaxSuma2 (fromList 11 11 [1..]))
--    21
--    (3.84 secs, 745,918,544 bytes)
--    λ> length (caminoMaxSuma3 (fromList 11 11 [1..]))
--    21
--    (0.01 secs, 0 bytes)

Máximo de las sumas de los caminos en una matriz

Los caminos desde el extremo superior izquierdo (posición (1,1)) hasta el extremo inferior derecho (posición (3,4)) en la matriz

   (  1  6 11  2 )
   (  7 12  3  8 )
   (  3  8  4  9 )

moviéndose en cada paso una casilla hacia abajo o hacia la derecha, son los siguientes:

   1, 7,  3, 8, 4, 9
   1, 7, 12, 8, 4, 9
   1, 7, 12, 3, 4, 9
   1, 7, 12, 3, 8, 9
   1, 6, 12, 8, 4, 9
   1, 6, 12, 3, 4, 9
   1, 6, 12, 3, 8, 9
   1, 6, 11, 3, 4, 9
   1, 6, 11, 3, 8, 9
   1, 6, 11, 2, 8, 9

Las sumas de los caminos son 32, 41, 36, 40, 40, 35, 39, 34, 38 y 37, respectivamente. El máximo de las suma de los caminos es 41.

Definir la función

   maximaSuma :: Matrix Int -> Int

tal que (maximaSuma m) es el máximo de las sumas de los caminos en la matriz m desde el extremo superior izquierdo hasta el extremo inferior derecho, moviéndose en cada paso una casilla hacia abajo o hacia la derecha. Por ejemplo,

   λ> maximaSuma (fromLists [[1,6,11,2],[7,12,3,8],[3,8,4,9]])
   41
   λ> maximaSuma (fromList 800 800 [1..])
   766721999

Nota: Se recomienda usar programación dinámica.

Soluciones

import Data.Matrix
 
-- 1ª definición
-- =============
 
maximaSuma1 :: Matrix Int -> Int
maximaSuma1 =
  maximum . map sum . caminos1
 
caminos1 :: Matrix Int -> [[Int]]
caminos1 m =
  map reverse (caminos1Aux m (nf,nc))
  where nf = nrows m
        nc = ncols m
 
-- (caminos1Aux p x) es la lista de los caminos invertidos en la matriz p
-- desde la posición (1,1) hasta la posición x. Por ejemplo,
caminos1Aux :: Matrix Int -> (Int,Int) -> [[Int]]
caminos1Aux m (1,1) = [[m!(1,1)]]
caminos1Aux m (1,j) = [[m!(1,k) | k <- [j,j-1..1]]]
caminos1Aux m (i,1) = [[m!(k,1) | k <- [i,i-1..1]]]
caminos1Aux m (i,j) = [m!(i,j) : xs
                      | xs <- caminos1Aux m (i,j-1) ++
                              caminos1Aux m (i-1,j)]
 
-- 2ª definición
-- =============
 
maximaSuma2 :: Matrix Int -> Int
maximaSuma2 =
  maximum . map sum . caminos2
 
caminos2 :: Matrix Int -> [[Int]]
caminos2 m =
  map reverse (matrizCaminos m ! (nrows m, ncols m))
 
matrizCaminos :: Matrix Int -> Matrix [[Int]]
matrizCaminos m = q
  where
    q = matrix (nrows m) (ncols m) f
    f (1,y) = [[m!(1,z) | z <- [y,y-1..1]]]
    f (x,1) = [[m!(z,1) | z <- [x,x-1..1]]]
    f (x,y) = [m!(x,y) : cs | cs <- q!(x-1,y) ++ q!(x,y-1)]  
 
-- 3ª definicion (por recursión, sin calcular el camino)
-- =====================================================
 
maximaSuma3 :: Matrix Int -> Int
maximaSuma3 m = maximaSuma3Aux m (nf,nc)
  where nf = nrows m
        nc = ncols m
 
-- (maximaSuma3Aux m p) calcula la suma máxima de un camino hasta la
-- posición p. Por ejemplo,
--    λ> maximaSuma3Aux (fromLists [[1,6,11,2],[7,12,3,8],[3,8,4,9]]) (3,4)
--    41
--    λ> maximaSuma3Aux (fromLists [[1,6,11,2],[7,12,3,8],[3,8,4,9]]) (3,3)
--    32
--    λ> maximaSuma3Aux (fromLists [[1,6,11,2],[7,12,3,8],[3,8,4,9]]) (2,4)
--    31
maximaSuma3Aux :: Matrix Int -> (Int,Int) -> Int
maximaSuma3Aux m (1,1) = m ! (1,1)
maximaSuma3Aux m (1,j) = maximaSuma3Aux m (1,j-1) + m ! (1,j)
maximaSuma3Aux m (i,1) = maximaSuma3Aux m (i-1,1) + m ! (i,1)
maximaSuma3Aux m (i,j) =
  max (maximaSuma3Aux m (i,j-1)) (maximaSuma3Aux m (i-1,j)) + m ! (i,j)
 
-- 4ª solución (mediante programación dinámica)
-- ============================================
 
maximaSuma4 :: Matrix Int -> Int
maximaSuma4 m = q ! (nf,nc)
  where nf = nrows m
        nc = ncols m
        q  = matrizMaximaSuma m
 
-- (matrizMaximaSuma m) es la matriz donde en cada posición p se
-- encuentra el máxima de las sumas de los caminos desde (1,1) a p en la
-- matriz m. Por ejemplo,   
--    λ> matrizMaximaSuma (fromLists [[1,6,11,2],[7,12,3,8],[3,8,4,9]]) 
--    (  1  7 18 20 )
--    (  8 20 23 31 )
--    ( 11 28 32 41 )
matrizMaximaSuma :: Matrix Int -> Matrix Int
matrizMaximaSuma m = q 
  where nf = nrows m
        nc = ncols m
        q  = matrix nf nc f
          where  f (1,1) = m ! (1,1)
                 f (1,j) = q ! (1,j-1) + m ! (1,j)
                 f (i,1) = q ! (i-1,1) + m ! (i,1)
                 f (i,j) = max (q ! (i,j-1)) (q ! (i-1,j)) + m ! (i,j)
 
-- Comparación de eficiencia
-- =========================
 
--    λ> maximaSuma1 (fromList 8 8 [1..])
--    659
--    (0.11 secs, 31,853,136 bytes)
--    λ> maximaSuma1a (fromList 8 8 [1..])
--    659
--    (0.09 secs, 19,952,640 bytes)
-- 
--    λ> maximaSuma1 (fromList 10 10 [1..])
--    1324
--    (2.25 secs, 349,722,744 bytes)
--    λ> maximaSuma2 (fromList 10 10 [1..])
--    1324
--    (0.76 secs, 151,019,296 bytes)
--    
--    λ> maximaSuma2 (fromList 11 11 [1..])
--    1781
--    (3.02 secs, 545,659,632 bytes)
--    λ> maximaSuma3 (fromList 11 11 [1..])
--    1781
--    (1.57 secs, 210,124,912 bytes)
--    
--    λ> maximaSuma3 (fromList 12 12 [1..])
--    2333
--    (5.60 secs, 810,739,032 bytes)
--    λ> maximaSuma4 (fromList 12 12 [1..])
--    2333
--    (0.01 secs, 23,154,776 bytes)

Caminos en una matriz

Los caminos desde el extremo superior izquierdo (posición (1,1)) hasta el extremo inferior derecho (posición (3,4)) en la matriz

   (  1  6 11  2 )
   (  7 12  3  8 )
   (  3  8  4  9 )

moviéndose en cada paso una casilla hacia abajo o hacia la derecha, son los siguientes:

   1, 7,  3, 8, 4, 9
   1, 7, 12, 8, 4, 9
   1, 7, 12, 3, 4, 9
   1, 7, 12, 3, 8, 9
   1, 6, 12, 8, 4, 9
   1, 6, 12, 3, 4, 9
   1, 6, 12, 3, 8, 9
   1, 6, 11, 3, 4, 9
   1, 6, 11, 3, 8, 9
   1, 6, 11, 2, 8, 9

Definir la función

   caminos :: Matrix Int -> [[Int]]

tal que (caminos m) es la lista de los caminos en la matriz m desde el extremo superior izquierdo hasta el extremo inferior derecho, moviéndose en cada paso una casilla hacia abajo o hacia la derecha. Por ejemplo,

   λ> caminos (fromLists [[1,6,11,2],[7,12,3,8],[3,8,4,9]])
   [[1,7, 3,8,4,9],
    [1,7,12,8,4,9],
    [1,7,12,3,4,9],
    [1,7,12,3,8,9],
    [1,6,12,8,4,9],
    [1,6,12,3,4,9],
    [1,6,12,3,8,9],
    [1,6,11,3,4,9],
    [1,6,11,3,8,9],
    [1,6,11,2,8,9]]
   λ> length (caminos (fromList 12 13 [1..]))
   1352078

Nota: Se recomienda usar programación dinámica.

Soluciones

import Data.Matrix
 
-- 1ª definición de caminos (por recursión)
-- ----------------------------------------
 
caminos1 :: Matrix Int -> [[Int]]
caminos1 a = aux (1,1)
  where
    aux (i,j)
      | i == m           = [[a!(i,k) | k <- [j..n]]]
      | j == n           = [[a!(k,j) | k <- [i..m]]]
      | otherwise        = [a!(i,j) : cs | cs <- aux (i+1,j) ++ aux (i,j+1)]
      where m = nrows a
            n = ncols a
 
-- 2ª solución (mediante programación dinámica)
-- --------------------------------------------
 
caminos2 :: Matrix Int -> [[Int]]
caminos2 a = q ! (1,1)
  where
    q = matrix m n f
    m = nrows a
    n = ncols a
    f (i,j) | i == m    = [[a!(i,k) | k <- [j..n]]]
            | j == n    = [[a!(k,j) | k <- [i..m]]]
            | otherwise = [a!(i,j) : cs | cs <- q!(i+1,j) ++ q!(i,j+1)]  
 
-- 3ª solución
-- ===========
 
caminos3 :: Matrix Int -> [[Int]]
caminos3 a
  | m == 1 || n == 1 = [toList a]
  | otherwise = map (a ! (1,1):) (caminos3 (submatrix 2 m 1 n a) ++
                                  caminos3 (submatrix 1 m 2 n a)) 
  where m = nrows a
        n = ncols a
 
-- Comparación de eficiencia
-- -------------------------
 
--    λ> length (caminos1 (fromList 11 11 [1..]))
--    184756
--    (4.15 secs, 738,764,712 bytes)
--    λ> length (caminos2 (fromList 11 11 [1..]))
--    184756
--    (0.74 secs, 115,904,952 bytes)
--    λ> length (caminos3 (fromList 11 11 [1..]))
--    184756
--    (2.22 secs, 614,472,136 bytes)

Máxima longitud de sublistas crecientes

Definir la función

   longitudMayorSublistaCreciente :: Ord a => [a] -> Int

tal que (longitudMayorSublistaCreciente xs) es la el máximo de las longitudes de las sublistas crecientes de xs. Por ejemplo,

   λ> longitudMayorSublistaCreciente [3,2,6,4,5,1]
   3
   λ> longitudMayorSublistaCreciente [10,22,9,33,21,50,41,60,80]
   6
   λ> longitudMayorSublistaCreciente [0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15]
   6
   λ> longitudMayorSublistaCreciente [1..2000]
   2000
   λ> longitudMayorSublistaCreciente [2000,1999..1]
   1
   λ> import System.Random
   λ> xs <- sequence [randomRIO (0,10^6) | _ <- [1..10^3]]
   λ> longitudMayorSublistaCreciente2 xs
   61
   λ> longitudMayorSublistaCreciente3 xs
   61

Nota: Se puede usar programación dinámica para aumentar la eficiencia.

Soluciones

import Data.List (nub, sort)
import Data.Array (Array, (!), array, elems, listArray)
 
-- 1ª solución
-- ===========
 
longitudMayorSublistaCreciente1 :: Ord a => [a] -> Int
longitudMayorSublistaCreciente1 =
  length . head . mayoresCrecientes
 
-- (mayoresCrecientes xs) es la lista de las sublistas crecientes de xs
-- de mayor longitud. Por ejemplo, 
--    λ> mayoresCrecientes [3,2,6,4,5,1]
--    [[3,4,5],[2,4,5]]
--    λ> mayoresCrecientes [3,2,3,2,3,1]
--    [[2,3],[2,3],[2,3]]
--    λ> mayoresCrecientes [10,22,9,33,21,50,41,60,80]
--    [[10,22,33,50,60,80],[10,22,33,41,60,80]]
--    λ> mayoresCrecientes [0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15]
--    [[0,4,6,9,13,15],[0,2,6,9,13,15],[0,4,6,9,11,15],[0,2,6,9,11,15]]
mayoresCrecientes :: Ord a => [a] -> [[a]]
mayoresCrecientes xs =
  [ys | ys <- xss
      , length ys == m]
  where xss = sublistasCrecientes xs
        m   = maximum (map length xss)
 
-- (sublistasCrecientes xs) es la lista de las sublistas crecientes de
-- xs. Por ejemplo,
--    λ> sublistasCrecientes [3,2,5]
--    [[3,5],[3],[2,5],[2],[5],[]]
sublistasCrecientes :: Ord a => [a] -> [[a]]
sublistasCrecientes []  = [[]]
sublistasCrecientes (x:xs) =
  [x:ys | ys <- yss, null ys || x < head ys] ++ yss
  where yss = sublistasCrecientes xs
 
-- 2ª solución
-- ===========
 
longitudMayorSublistaCreciente2 :: Ord a => [a] -> Int
longitudMayorSublistaCreciente2 xs =
  longitudSCM xs (sort (nub xs))
 
-- (longitudSCM xs ys) es la longitud de la subsecuencia máxima de xs e
-- ys. Por ejemplo, 
--   longitudSCM "amapola" "matamoscas" == 4
--   longitudSCM "atamos" "matamoscas"  == 6
--   longitudSCM "aaa" "bbbb"           == 0
longitudSCM :: Eq a => [a] -> [a] -> Int
longitudSCM xs ys = (matrizLongitudSCM xs ys) ! (n,m)
  where n = length xs
        m = length ys
 
-- (matrizLongitudSCM xs ys) es la matriz de orden (n+1)x(m+1) (donde n
-- y m son los números de elementos de xs e ys, respectivamente) tal que
-- el valor en la posición (i,j) es la longitud de la SCM de los i
-- primeros elementos de xs y los j primeros elementos de ys. Por ejemplo,
--    λ> elems (matrizLongitudSCM "amapola" "matamoscas")
--    [0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,0,1,1,1,1,2,2,2,2,2,2,
--     0,1,2,2,2,2,2,2,2,3,3,0,1,2,2,2,2,2,2,2,3,3,0,1,2,2,2,2,3,3,3,3,3,
--     0,1,2,2,2,2,3,3,3,3,3,0,1,2,2,3,3,3,3,3,4,4]
-- Gráficamente,
--       m a t a m o s c a s
--    [0,0,0,0,0,0,0,0,0,0,0,
-- a   0,0,1,1,1,1,1,1,1,1,1,
-- m   0,1,1,1,1,2,2,2,2,2,2,
-- a   0,1,2,2,2,2,2,2,2,3,3,
-- p   0,1,2,2,2,2,2,2,2,3,3,
-- o   0,1,2,2,2,2,3,3,3,3,3,
-- l   0,1,2,2,2,2,3,3,3,3,3,
-- a   0,1,2,2,3,3,3,3,3,4,4]
matrizLongitudSCM :: Eq a => [a] -> [a] -> Array (Int,Int) Int
matrizLongitudSCM xs ys = q
  where
    n = length xs
    m = length ys
    v = listArray (1,n) xs
    w = listArray (1,m) ys
    q = array ((0,0),(n,m)) [((i,j), f i j) | i <- [0..n], j <- [0..m]]
      where f 0 _ = 0
            f _ 0 = 0
            f i j | v ! i == w ! j = 1 + q ! (i-1,j-1)
                  | otherwise      = max (q ! (i-1,j)) (q ! (i,j-1))
 
-- 3ª solución
-- ===========
 
longitudMayorSublistaCreciente3 :: Ord a => [a] -> Int
longitudMayorSublistaCreciente3 xs =
  maximum (elems (vectorlongitudMayorSublistaCreciente xs))
 
-- (vectorlongitudMayorSublistaCreciente xs) es el vector de longitud n
-- (donde n es el tamaño de xs) tal que el valor i-ésimo es la longitud
-- de la sucesión más larga que termina en el elemento i-ésimo de
-- xs. Por ejemplo,  
--    λ> vectorlongitudMayorSublistaCreciente [3,2,6,4,5,1]
--    array (1,6) [(1,1),(2,1),(3,2),(4,2),(5,3),(6,1)]
vectorlongitudMayorSublistaCreciente :: Ord a => [a] -> Array Int Int
vectorlongitudMayorSublistaCreciente xs = v
  where v = array (1,n) [(i,f i) | i <- [1..n]]
        n = length xs
        w = listArray (1,n) xs
        f 1 = 1
        f i | null ls   = 1
            | otherwise = 1 + maximum ls
          where ls = [v ! j | j <-[1..i-1], w ! j < w ! i]
 
-- Comparación de eficiencia
-- =========================
 
--    λ> longitudMayorSublistaCreciente1 [1..20]
--    20
--    (4.60 secs, 597,014,240 bytes)
--    λ> longitudMayorSublistaCreciente2 [1..20]
--    20
--    (0.03 secs, 361,384 bytes)
--    λ> longitudMayorSublistaCreciente3 [1..20]
--    20
--    (0.03 secs, 253,944 bytes)
--    
--    λ> longitudMayorSublistaCreciente2 [1..2000]
--    2000
--    (8.00 secs, 1,796,495,488 bytes)
--    λ> longitudMayorSublistaCreciente3 [1..2000]
--    2000
--    (5.12 secs, 1,137,667,496 bytes)
--    
--    λ> longitudMayorSublistaCreciente1 [1000,999..1]
--    1
--    (0.95 secs, 97,029,328 bytes)
--    λ> longitudMayorSublistaCreciente2 [1000,999..1]
--    1
--    (7.48 secs, 1,540,857,208 bytes)
--    λ> longitudMayorSublistaCreciente3 [1000,999..1]
--    1
--    (0.86 secs, 160,859,128 bytes)
--    
--    λ> longitudMayorSublistaCreciente1 (show (2^300))
--    10
--    (7.90 secs, 887,495,368 bytes)
--    λ> longitudMayorSublistaCreciente2 (show (2^300))
--    10
--    (0.04 secs, 899,152 bytes)
--    λ> longitudMayorSublistaCreciente3 (show (2^300))
--    10
--    (0.04 secs, 1,907,936 bytes)
--    
--    λ> longitudMayorSublistaCreciente2 (show (2^6000))
--    10
--    (0.06 secs, 9,950,592 bytes)
--    λ> longitudMayorSublistaCreciente3 (show (2^6000))
--    10
--    (3.46 secs, 686,929,744 bytes)
--    
--    λ> import System.Random
--    (0.00 secs, 0 bytes)
--    λ> xs <- sequence [randomRIO (0,10^6) | _ <- [1..10^3]]
--    (0.02 secs, 1,993,032 bytes)
--    λ> longitudMayorSublistaCreciente2 xs
--    61
--    (7.73 secs, 1,538,771,392 bytes)
--    λ> longitudMayorSublistaCreciente3 xs
--    61
--    (1.04 secs, 212,538,648 bytes)
--    λ> xs <- sequence [randomRIO (0,10^6) | _ <- [1..10^3]]
--    (0.03 secs, 1,993,032 bytes)
--    λ> longitudMayorSublistaCreciente2 xs
--    57
--    (7.56 secs, 1,538,573,680 bytes)
--    λ> longitudMayorSublistaCreciente3 xs
--    57
--    (1.05 secs, 212,293,984 bytes)