Diagonales de matrices como listas

Las matrices se pueden representar como listas de listas de la misma longitud, donde cada uno de sus elementos representa una fila de la matriz.

Definir la función

tal que (diagonal xss) es la diagonal de la matriz xss. Por ejemplo,

Soluciones

Solución con Maxima

Perímetro más frecuente de triángulos rectángulos

El grado perimetral de un número p es la cantidad de tres triángulos rectángulos de lados enteros cuyo perímetro es p. Por ejemplo, el grado perimetral de 120 es 3 ya que sólo hay 3 triángulos rectángulos de lados enteros cuyo perímetro es 120: {20,48,52}, {24,45,51} y {30,40,50}.

Definir la función

tal que (maxGradoPerimetral n) es el par (m,ps) tal que m es el máximo grado perimetral de los números menores o iguales que n y ps son los perímetros, menores o iguales que n, cuyo grado perimetral es m. Por ejemplo,

Soluciones

Ampliación de una matriz sumando sus filas

Representamos las matrices mediante el tipo de dato

Por ejemplo,

representa la matriz

Definir la función

tal que (ampliada p) es la matriz obtenida al añadir una nueva fila a p cuyo elemento i-ésimo es la suma de la columna i-ésima de p. Por ejemplo,

En Haskell,

Soluciones

Números de suma prima hereditarios por la derecha

Decimos que un número es de suma prima si la suma de todos sus dígitos es un número primo. Por ejemplo el número 562 es de suma prima pues la suma de sus dígitos es el número primo 13; sin embargo, el número 514 no es de suma prima pues la suma de sus dígitos es 10, que no es primo.

Decimos que un número es de suma prima hereditario por la derecha si es de suma prima y los números que se obtienen eliminando sus últimas cifras también son de suma prima. Por ejemplo 7426 es de suma prima hereditario por la derecha pues 7426, 742, 74 y 7 son todos números de suma prima.

Definir la constante

cuyo valor es la lista infinita de los números de suma prima hereditarios por la derecha. Por ejemplo,

Soluciones

Matrices cruzadas

Consideramos las matrices representadas como tablas cuyos índices son pares de números naturales.

Una matriz cruzada es una matriz cuadrada en la que sólo hay elementos distintos de 0 en las diagonales principal y secundaria. Por ejemplo,

Definir la función

tal que (creaCruzada n) es la siguiente matriz cruzada con n filas y n columnas:

Es decir, los elementos de la diagonal principal son [1,…,n], en orden desde la primera fila hasta la última; y los elementos de la diagonal secundaria son [1,…,n], en orden desde la primera fila hasta la última. Por ejemplo,

Soluciones

Máximos locales de una matriz

Un elemento de una matriz es un máximo local si es mayor que todos sus vecinos. Por ejemplo, en la matriz

los máximos locales son 8 (en la posición (1,4)), 2 (en la posición (2,2)) y 7 (en la posición (4,3)).

Definimos el tipo de las matrices, mediante

y el ejemplo anterior por

Definir la función

tal que (maximosLocales p) es la lista de las posiciones en las que hay un máximo local, con el valor correspondiente. Por ejemplo,

Soluciones

Actualización de una lista

Definir la función

tal que (actualiza xs ps) es la lista obtenida sustituyendo en xs los elementos cuyos índices son las primeras componentes de ps por las segundas. Por ejemplo,

Soluciones

Cálculo del número de islas rectangulares en una matriz

En este problema se consideran matrices cuyos elementos son 0 y 1. Los valores 1 aparecen en forma de islas rectangulares separadas por 0 de forma que como máximo las islas son diagonalmente adyacentes. Por ejemplo,

Definir la función

tal que (numeroDeIslas p) es el número de islas de la matriz p. Por ejemplo,

Soluciones

Suma de conjuntos de polinomios

Los conjuntos de polinomios se pueden representar por listas de listas de la misma longitud. Por ejemplo, los polinomios 3x²+5x+9, 10x³+9 y 8x³+5x²+x-1 se pueden representar por las listas [0,3,5,9], [10,0,0,9] y [8,5,1,-1].

Definir la función

tal que (sumaPolinomios ps) es la suma de los polinomios ps. Por ejemplo,

Soluciones

Diagonales secundarias de una matriz

Definir la función

tal que (diagonalesSecundarias p) es la lista de las diagonales secundarias de p. Por ejemplo, para la matriz

la lista de sus diagonales secundarias es

En Haskell,

Soluciones

Suma de una lista de vectores

Definir la función

tal que (sumaVec xss) es la suma de los vectores de xss. Por ejemplo,

Soluciones

Sopa de letras

Enunciado

Soluciones

Buscaminas

Enunciado

Soluciones

Referencia

El ejercicio está basado en Minesweeper de UVa Online Judge.