Distancia a Erdős

Una de las razones por la que el matemático húngaro Paul Erdős es conocido es por la multitud de colaboraciones que realizó durante toda su carrera, un total de 511. Tal es así que se establece la distancia a Erdős como la distancia que has estado de coautoría con Erdős. Por ejemplo, si eres Paul Erdős tu distancia a Erdős es 0, si has escrito un artículo con Erdős tu distancia es 1, si has escrito un artículo con alguien que ha escrito un artículo con Erdős tu distancia es 2, etc. El objetivo de este problema es definir una función que a partir de una lista de pares de coautores y un número natural n calcular la lista de los matemáticos a una distancia n de Erdős.

Para el problema se considerará la siguiente lista de coautores

La lista anterior es real y se ha obtenido del artículo Famous trails to Paul Erdős.

Definir la función

tal que (numeroDeErdos xs n) es la lista de lista de los matemáticos de la
lista de coautores xs que se encuentran a una distancia n de Erdős. Por ejemplo,

Nota: Este ejercicio ha sido propuesto por Enrique Naranjo.

Soluciones

Caracteres en la misma posición que en el alfabeto

Un carácter c de una cadena cs está bien colocado si la posición de c en cs es la misma que en el abecedario (sin distinguir entre mayúsculas y minúsculas). Por ejemplo, los elementos bien colocados de la cadena «aBaCEria» son ‘a’, ‘B’ y ‘E’.

Definir la función

tal que (nBienColocados cs) es el número de elementos bien colocados de la cadena cs. Por ejemplo,

Soluciones

Referencias

Basado en el problema Count characters at same position as in English alphabets de Sahil Chhabra en GeeksforGeeks.

Problema de las particiones óptimas

El problema de la particiones óptimas consiste en dada una lista xs dividirla en dos sublistas ys y zs tales que el valor absoluto de la diferencia de la suma de los elementos de xs y la suma de los elemento de zs sea lo menor posible.Cada una de estas divisiones (ys,zs) es una partición óptima de xs. Por ejemplo, la partición óptima de [2,3,5] es ([2,3],[5]) ya que |(2+3) – 5| = 0. Una lista puede tener distintas particiones óptimas. Por ejemplo, [1,1,2,3] tiene dos particiones óptimas ([1,2],[1,3]) y ([1,1,2],[3]) ambas con diferencia 1 (es decir, 1 = |(1+2)-(1+3)| = |(1+1+2)-3|).

Definir la función

tal que (particionesOptimas xs) es la lista de las particiones óptimas de xs. Por ejemplo,

Soluciones

Máxima ramificación

Los árboles se pueden representar mediante el siguiente tipo de datos

Por ejemplo, los árboles

se representan por

En el primer ejemplo la máxima ramificación es 2 (en el nodo 1 que tiene 2 hijos), la del segundo es 3 (en el nodo 3 que tiene 3 hijos) y la del tercero es 3 (en el nodo 3 que tiene 3 hijos).

Definir la función

tal que (maximaRamificacion a) es la máxima ramificación del árbol a. Por ejemplo,

Soluciones

Números consecutivos compuestos

Una serie compuesta de longitud n es una lista de n números consecutivos que son todos compuestos. Por ejemplo, [8,9,10] y [24,25,26] son dos series compuestas de longitud 3.

Cada serie compuesta se puede representar por el par formado por su primer y último elemento. Por ejemplo, las dos series anteriores se pueden representar pos (8,10) y (24,26) respectivamente.

Definir la función

tal que (menorSerieCompuesta n) es la menor serie compuesta (es decir, la que tiene menores elementos) de longitud 3. Por ejemplo,

Comprobar con QuickCheck que para n > 1, el primer elemento de (menorSerieCompuesta n) es igual al primero de (menorSerieCompuesta (n-1)) o al primero de (menorSerieCompuesta (n+1)).

Soluciones

Referencias

Máximo producto en la partición de un número

El artículo de esta semana de Antonio Roldán en su blog Números y hoja de cálculo es Máximo producto en la partición de un número (1)

Una partición de un entero positivo n es una forma de descomponer n como suma de enteros positivos. Dos sumas se considerarán iguales si solo difieren en el orden de los sumandos. Por ejemplo, las 11 particiones de 6 (con sus correspondientes productos) son

Se observa que el máximo producto de las particiones de 6 es 9.

Definir la función

tal que (maximoProductoParticiones n) es el máximo de los productos de las particiones de n. Por ejemplo,

Comprobar con QuickChek que los únicos posibles factores de (maximoProductoParticiones n) son 2 y 3.

Soluciones

Referencia

Sucesiones de listas de números

En la Olimpiada Internacional de Matemáticas del 2012 se propuso el siguiente problema:

Varios enteros positivos se escriben en una lista. Iterativamente, Alicia elige dos números adyacentes x e y tales que x > y y x está a la izquierda de y y reemplaza el par (x,y) por (y+1,x) o (x-1,x). Demostrar que sólo puede aplicar un número finito de dichas iteraciones.

Por ejemplo, las transformadas de la lista [1,3,2] son [1,2,3] y [1,3,3] y las dos obtenidas son finales (es decir, no se les puede aplicar ninguna transformación).

Definir las funciones

tales que

  • (soluciones xs) es la lista de pares (n,ys) tales que ys es una lista obtenida aplicándole n transformaciones a xs. Por ejemplo,

  • (finales xs) son las listas obtenidas transformando xs y a las que no se les puede aplicar más transformaciones. Por ejemplo,

  • (finalesMaximales xs) es el par (n,yss) tal que la longitud de las cadenas más largas de transformaciones a partir de xs e yss es la lista de los estados finales a partir de xs con n transformaciones. Por ejemplo,

Soluciones

Problema de las jarras

En el problema de las jarras (A,B,C) se tienen dos jarras sin marcas de medición, una de A litros de capacidad y otra de B. También se dispone de una bomba que permite llenar las jarras de agua.

El problema de las jarras (A,B,C) consiste en determinar cómo se puede lograr tener exactamente C litros de agua en la jarra de A litros de capacidad.

Definir, mediante búsqueda en espacio de estados, la función

tal (jarras (a,b,c)) es la lista de las soluciones del problema de las
jarras (a,b,c). Por ejemplo,

La interpretación [(0,0),(4,0),(1,3),(1,0),(0,1),(4,1),(2,3)] es:

  • (0,0) se inicia con las dos jarras vacías,
  • (4,0) se llena la jarra de 4 con el grifo,
  • (1,3) se llena la de 3 con la de 4,
  • (1,0) se vacía la de 3,
  • (0,1) se pasa el contenido de la primera a la segunda,
  • (4,1) se llena la primera con el grifo,
  • (2,3) se llena la segunda con la primera.

Otros ejemplos

Nota: Las librerías necesarias se encuentran en la página de códigos.

Soluciones

Problema del dominó

Las fichas del dominó se pueden representar por pares de números enteros. El problema del dominó consiste en colocar todas las fichas de una lista dada de forma que el segundo número de cada ficha coincida con el primero de la siguiente.

Definir, mediante búsqueda en espacio de estados, la función

tal que (domino fs) es la lista de las soluciones del problema del dominó correspondiente a las fichas fs. Por ejemplo,

Nota: Las librerías necesarias se encuentran en la página de códigos.

Soluciones

Sucesión fractal

La sucesión fractal

está construida de la siguiente forma:

  • los términos pares forman la sucesión de los números naturales

  • los términos impares forman la misma sucesión original

Definir las funciones

tales que

  • sucFractal es la lista de los términos de la sucesión fractal. Por ejemplo,

  • (sumaSucFractal n) es la suma de los n primeros términos de la sucesión fractal. Por ejemplo,

Soluciones

Referencia

Conjuntos de primos emparejables

Un conjunto de primos emparejables es un conjunto S de números primos tales que al concatenar cualquier par de elementos de S se obtiene un número primo. Por ejemplo, {3, 7, 109, 673} es un conjunto de primos emparejables ya que sus elementos son primos y las concatenaciones de sus parejas son 37, 3109, 3673, 73, 7109, 7673, 1093, 1097, 109673, 6733, 6737 y 673109 son primos.

Definir la función

tal que (emparejables n m) es el conjunto de los conjuntos emparejables de n elementos menores que n. Por ejemplo,

Soluciones

Cadenas de divisores

Una cadena de divisores de un número n es una lista donde cada elemento es un divisor de su siguiente elemento en la lista. Por ejemplo, las cadenas de divisores de 12 son [2,4,12], [2,6,12], [2,12], [3,6,12], [3,12], [4,12], [6,12] y [12].

Definir la función

tal que (cadenasDivisores n) es la lista de las cadenas de divisores de n. Por ejemplo,

Soluciones

Referencias

Operaciones con series de potencias

Una serie de potencias es una serie de la forma

Las series de potencias se pueden representar mediante listas
infinitas. Por ejemplo, la serie de la función exponencial es

y se puede representar por [1, 1, 1/2, 1/6, 1/24, 1/120, …]

Las operaciones con series se pueden ver como una generalización de las de los polinomios.

En lo que sigue, usaremos el tipo (Serie a) para representar las series de potencias con coeficientes en a y su definición es

Definir las siguientes funciones

tales que

  • (opuesta xs) es la opuesta de la serie xs. Por ejemplo,

  • (suma xs ys) es la suma de las series xs e ys. Por ejemplo,

  • (resta xs ys) es la resta de las series xs es ys. Por ejemplo,

  • (producto xs ys) es el producto de las series xs e ys. Por ejemplo,

  • (cociente xs ys) es el cociente de las series xs e ys. Por ejemplo,

  • (derivada xs) es la derivada de la serie xs. Por ejemplo,

  • (integral xs) es la integral de la serie xs. Por ejemplo,

  • expx es la serie de la función exponencial. Por ejemplo,

Soluciones

Comportamiento del último dígito en primos consecutivos

El pasado 11 de marzo se ha publicado el artículo Unexpected biases in the distribution of consecutive primes en el que muestra que los números primos repelen a otros primos que terminan en el mismo dígito.

La lista de los últimos dígitos de los 30 primeros números es

Se observa que hay 6 números que su último dígito es un 1 y de sus consecutivos 4 terminan en 3 y 2 terminan en 7.

Definir la función

tal que (distribucionUltimos n) es la matriz cuyo elemento (i,j) indica cuántos de los n primeros números primos terminan en i y su siguiente número primo termina en j. Por ejemplo,

Nota: Se observa cómo se «repelen» ya que en las filas del 1, 3, 7 y 9 el menor elemento es el de la diagonal.

Soluciones

Solución en Maxima

Máxima suma de elementos consecutivos

Definir la función

tal que (sumaMaxima xs) es el valor máximo de la suma de elementos consecutivos de la lista xs. Por ejemplo,

Comprobar con QuickCheck que

Soluciones

Paridad del número de divisores

Definir la función

tal que (nDivisoresPar n) se verifica si n tiene un número par de divisores. Por ejemplo,

Soluciones

Solución en Maxima

Máxima longitud de las sublistas comunes

Las sublistas comunes de «1325» y «36572» son «», «3»,»32″, «35», «2» y «5». El máximo de sus longitudes es 2.

Definir la función

tal que (maximo xs ys) es el máximo de las longitudes de las sublistas comunes de xs e ys. Por ejemplo,

Soluciones

Particiones en sumas de cuadrados

Definir las funciones

tales que

  • (particionesCuadradas n) es la listas de conjuntos de cuadrados cuya suma es n. Por ejemplo,

  • (nParticionesCuadradas n) es el número de conjuntos de cuadrados cuya suma es n. Por ejemplo,

  • (graficaParticionesCuadradas n) dibuja la gráfica de la sucesión

Por ejemplo, con (graficaParticionesCuadradas 100) se obtiene

Particiones_en_sumas_de_cuadrados

Soluciones

Referencias

Sumas digitales de primos consecutivos

Definir la función

tal que (primosConsecutivosConSumasDigitalesPrimas k) es la sucesión de listas de k primos consecutivos tales que las sumas ordenadas de sus dígitos también son primos consecutivos. Por ejemplo,

Soluciones

Referencias

Basado en el artículo DigitSums of some consecutive primes del blog Fun With Num3ers.

Antiimágenes en una función creciente

Definir la función

tal que (antiimagen f y) es justo el x tal que f(x) = y, si y pertenece a la imagen de la función creciente f, o nada, en caso contrario. Por ejemplo,

Nota. Se supone que f está definida sobre los números naturales.

Soluciones

Cambios de signo

En una lista xs se produce un cambio de signo por cada elemento x de la lista junto el primero de los elementos de xs con signo opuesto al de x. Por ejemplo,en la lista [6,5,-4,0,-2,-7,0,-8,-1,4] hay 2 cambios de signo (entre (5,-4) y (-1,4)) y en la lista [6,5,-4,0, 2,-7,0,-8,-1,4] hay 4 cambios de signo (entre (5,-4), (-4,2), (2,-7) y(-1,4)).

Definir la función

tal que (nCambios xs) es el número de cambios de signos de la lista xs. Por ejemplo,

Soluciones

2016 es un número práctico

Un entero positivo n es un número práctico si todos los enteros positivos menores que él se pueden expresar como suma de distintos divisores de n. Por ejemplo, el 12 es un número práctico, ya que todos los enteros positivos menores que 12 se pueden expresar como suma de divisores de 12 (1, 2, 3, 4 y 6) sin usar ningún divisor más de una vez en cada suma:

En cambio, 14 no es un número práctico ya que 6 no se puede escribir como suma, con sumandos distintos, de divisores de 14.

Definir la función

tal que (esPractico n) se verifica si n es un número práctico. Por ejemplo,

Soluciones

Referencias

Basado en el artículo de Gaussianos Feliz Navidad y Feliz Año (número práctico) 2016.

Otras referencias

Suma con redondeos

Definir las funciones

tales que

  • (sumaRedondeos n) es la sucesión cuyo k-ésimo término es

Por ejemplo,

  • (limiteSumaRedondeos n) es la suma de la serie

Por ejemplo,

Soluciones

Elementos óptimos

Definir la función

tal que (optimos r f xs) es la lista de los elementos de xs donde la función f alcanza sus valores óptimos respecto de la relación r. Por ejemplo,

Soluciones

Operación sobre todos los pares

Definir la función

tal que (todosPares f xs ys) es el resultado de aplicar la operación f a todos los pares de xs e ys. Por ejemplo,

Soluciones

Producto infinito

Definir la función

tal que (productoInfinito xs) es la lista infinita que en la posición N tiene el producto de los N primeros elementos de la lista infinita xs. Por ejemplo,

Nota: Este ejercicio es parte del examen del grupo 3 del 2 de diciembre.

Soluciones

Los números de Smith

Un número de Smith es un número natural compuesto que cumple que la suma de sus dígitos es igual a la suma de los dígitos de todos sus factores primos (si tenemos algún factor primo repetido lo sumamos tantas veces como aparezca). Por ejemplo, el 22 es un número de Smith ya que

y el 4937775 también lo es ya que

Definir las funciones

tales que

  • (esSmith x) se verifica si x es un número de Smith. Por ejemplo,

  • smith es la lista cuyos elementos son los números de Smith. Por ejemplo,

Soluciones

Raíces enteras de los números primos

Definir la sucesión

cuyos elementos son las partes enteras de las raíces cuadradas de los números primos. Por ejemplo,

Comprobar con QuickCheck que la diferencia entre dos términos consecutivos de la sucesión es como máximo igual a 1.

Soluciones

Dígitos visibles y ocultos

Una cadena clave es una cadena que contiene dígitos visibles y ocultos. Los dígitos se ocultan mediante las primeras letras minúsculas: la ‘a’ oculta el ‘0’, la ‘b’ el ‘1’ y así sucesivamente hasta la ‘j’ que oculta el ‘9’. Los restantes símbolos de la cadena no tienen significado y se pueden ignorar.

Definir la función

tal que (numeroOculto cs) es justo el número formado por los dígitos visibles u ocultos de la cadena clave cs, si cs tiene dígitos y Nothing en caso contrario. Por ejemplo,

Soluciones

Con mínimo común denominador

Los números racionales se pueden representar como pares de enteros:

Definir la función

tal que (reducida xs) es la lista de los números racionales donde cada uno es igual al correspondiente elemento de xs y el denominador de todos los elementos de (reducida xs) es el menor número que cumple dicha condición; es decir, si xs es la lista

entonces (reducida xs) es

tales que

y d es el menor posible. Por ejemplo,

Soluciones