Menu Close

Etiqueta: elem

Codificación de Fibonacci

La codificación de Fibonacci de un número n es una cadena d = d(0)d(1)…d(k-1)d(k) de ceros y unos tal que

   n = d(0)*F(2) + d(1)*F(3) +...+ d(k-1)*F(k+1) 
   d(k-1) = d(k) = 1

donde F(i) es el i-ésimo término de la sucesión de Fibonacci.

   0,1,1,2,3,5,8,13,21,34,...

Por ejemplo. La codificación de Fibonacci de 4 es “1011” ya que los dos últimos elementos son iguales a 1 y

   1*F(2) + 0*F(3) + 1*F(4) = 1*1 + 0*2 + 1*3 = 4

La codificación de Fibonacci de los primeros números se muestra en la siguiente tabla

    1  = 1     = F(2)           ≡       11
    2  = 2     = F(3)           ≡      011
    3  = 3     = F(4)           ≡     0011
    4  = 1+3   = F(2)+F(4)      ≡     1011
    5  = 5     = F(5)           ≡    00011
    6  = 1+5   = F(2)+F(5)      ≡    10011
    7  = 2+5   = F(3)+F(5)      ≡    01011
    8  = 8     = F(6)           ≡   000011
    9  = 1+8   = F(2)+F(6)      ≡   100011
   10  = 2+8   = F(3)+F(6)      ≡   010011
   11  = 3+8   = F(4)+F(6)      ≡   001011
   12  = 1+3+8 = F(2)+F(4)+F(6) ≡   101011
   13  = 13    = F(7)           ≡  0000011
   14  = 1+13  = F(2)+F(7)      ≡  1000011

Definir la función

   codigoFib :: Integer -> String

tal que (codigoFib n) es la codificación de Fibonacci del número n. Por ejemplo,

   λ> codigoFib 65
   "0100100011"
   λ> [codigoFib n | n <- [1..7]]
   ["11","011","0011","1011","00011","10011","01011"]

Soluciones

import Data.List
import Data.Array
import Test.QuickCheck
 
-- 1ª solución
-- ===========
 
codigoFib1 :: Integer -> String
codigoFib1 = (concatMap show) . codificaFibLista
 
-- (codificaFibLista n) es la lista correspondiente a la codificación de
-- Fibonacci del número n. Por ejemplo,
--    λ> codificaFibLista 65
--    [0,1,0,0,1,0,0,0,1,1]
--    λ> [codificaFibLista n | n <- [1..7]]
--    [[1,1],[0,1,1],[0,0,1,1],[1,0,1,1],[0,0,0,1,1],[1,0,0,1,1],[0,1,0,1,1]]
codificaFibLista :: Integer -> [Integer]
codificaFibLista n = map f [2..head xs] ++ [1]
  where xs = map fst (descomposicion n)
        f i | elem i xs = 1
            | otherwise = 0
 
-- (descomposicion n) es la lista de pares (i,f) tales que f es el
-- i-ésimo número de Fibonacci y las segundas componentes es una
-- sucesión decreciente de números de Fibonacci cuya suma es n. Por
-- ejemplo, 
--    descomposicion 65  ==  [(10,55),(6,8),(3,2)]
--    descomposicion 66  ==  [(10,55),(6,8),(4,3)]
descomposicion :: Integer -> [(Integer, Integer)]
descomposicion 0 = []
descomposicion 1 = [(2,1)]
descomposicion n = (i,x) : descomposicion (n-x)
  where (i,x) = fibAnterior n
 
-- (fibAnterior n) es el mayor número de Fibonacci menor o igual que
-- n. Por ejemplo,
--    fibAnterior 33  ==  (8,21)
--    fibAnterior 34  ==  (9,34)
fibAnterior :: Integer -> (Integer, Integer)
fibAnterior n = last (takeWhile p fibsConIndice)
  where p (i,x) = x <= n
 
-- fibsConIndice es la sucesión de los números de Fibonacci junto con
-- sus índices. Por ejemplo,
--    λ> take 10 fibsConIndice
--    [(0,0),(1,1),(2,1),(3,2),(4,3),(5,5),(6,8),(7,13),(8,21),(9,34)]
fibsConIndice :: [(Integer, Integer)]
fibsConIndice = zip [0..] fibs
 
-- fibs es la sucesión de Fibonacci. Por ejemplo, 
--    take 10 fibs  ==  [0,1,1,2,3,5,8,13,21,34]
fibs :: [Integer]
fibs = 0 : 1 : zipWith (+) fibs (tail fibs)
 
--- 2ª solución
-- ============
 
codigoFib2 :: Integer -> String
codigoFib2 = (concatMap show) . elems . codificaFibVec
 
-- (codificaFibVec n) es el vector correspondiente a la codificación de
-- Fibonacci del número n. Por ejemplo,
--    λ> codificaFibVec 65
--    array (0,9) [(0,0),(1,1),(2,0),(3,0),(4,1),(5,0),(6,0),(7,0),(8,1),(9,1)]
--    λ> [elems (codificaFibVec n) | n <- [1..7]]
--    [[1,1],[0,1,1],[0,0,1,1],[1,0,1,1],[0,0,0,1,1],[1,0,0,1,1],[0,1,0,1,1]]
codificaFibVec :: Integer -> Array Integer Integer
codificaFibVec n = accumArray (+) 0 (0,a+1) ((a+1,1):is) 
  where is = [(i-2,1) | (i,x) <- descomposicion n]
        a  = fst (head is)
 
-- Comparación de eficiencia
-- =========================
--    λ> head [n | n <- [1..], length (codigoFib1 n) > 25]
--    121393
--    (14.37 secs, 3135674112 bytes)
--    λ> :r
--    Ok, modules loaded: Main.
--    λ> head [n | n <- [1..], length (codigoFib2 n) > 25]
--    121393
--    (12.04 secs, 2762190920 bytes)
 
-- Propiedades
-- ===========
 
-- Usaremos la 2ª definición
codigoFib :: Integer -> String
codigoFib = codigoFib2
 
-- Prop.: La función descomposicion es correcta:
propDescomposicionCorrecta :: Integer -> Property
propDescomposicionCorrecta n =
  n >= 0 ==> n == sum (map snd (descomposicion n))
 
-- La comprobación es
--    λ> quickCheck propDescomposicionCorrecta
--    +++ OK, passed 100 tests.
 
-- Prop.: Todo número natural se puede descomponer en suma de números de
-- la sucesión de Fibonacci.
propDescomposicion :: Integer -> Property
propDescomposicion n =
  n >= 0 ==> not (null (descomposicion n))
 
-- La comprobación es
--    λ> quickCheck propDescomposicion
--    +++ OK, passed 100 tests.
 
-- Prop.: Las codificaciones de Fibonacci tienen como mínimo 2 elementos.
prop1 :: Integer -> Property
prop1 n = n > 0 ==> length (codigoFib n) >= 2
 
-- La comprobación es
--    λ> quickCheck prop1
--    +++ OK, passed 100 tests.
 
-- Prop.: Los dos últimos elementos de las codificaciones de Fibonacci
-- son iguales a 1.
prop2 :: Integer -> Property
prop2 n = n > 0 ==> take 2 (reverse (codigoFib n)) == "11"
 
-- La comprobación es
--    λ> quickCheck prop2
--    +++ OK, passed 100 tests.
 
-- Prop.: En las codificaciones de Fibonacci, la cadena "11" sólo
-- aparece una vez y la única vez que aparece es al final.
prop3 :: Integer -> Property
prop3 n = 
  n > 0 ==> not (isInfixOf "11" (drop 2 (reverse (codigoFib n))))
 
-- La comprobación es
--    λ> quickCheck prop3
--    +++ OK, passed 100 tests.

Pandigitales primos

Un número con n dígitos es pandigital si contiene todos los dígitos del 1 a n exactamente una vez. Por ejemplo, 2143 es un pandigital con 4 dígitos y, además, es primo.

Definir la constante

   pandigitalesPrimos :: [Int]

tal que sus elementos son los números pandigitales, ordenados de mayor a menor. Por ejemplo,

   take 3 pandigitalesPrimos       ==  [7652413,7642513,7641253]
   2143 `elem` pandigitalesPrimos  ==  True
   length pandigitalesPrimos       ==  538

Soluciones

import Data.List (permutations, sort)
import Data.Char (intToDigit)
import Data.Numbers.Primes (isPrime, primes)
 
-- 1ª solución
-- ===========
 
pandigitalesPrimos :: [Int]
pandigitalesPrimos =
  concatMap nPandigitalesPrimos [9,8..1]
 
-- (nPandigitalesPrimos n) es la lista de los números pandigitales con n
-- dígitos, ordenada de mayor a menor. Por ejemplo,
--    nPandigitalesPrimos 4  ==  [4231,2341,2143,1423]
--    nPandigitalesPrimos 5  ==  []
nPandigitalesPrimos1 :: Int -> [Int]
nPandigitalesPrimos1 n = filter isPrime (pandigitales n)
 
-- Nota. La definición anterior se puede simplificar, ya que la suma de
-- los números de 1 a n es divisible por 3, entonces los números
-- pandigitales con n dígitos también lo son y, por tanto, no son primos.
nPandigitalesPrimos2 :: Int -> [Int]
nPandigitalesPrimos2 n 
  | sum [1..n] `mod` 3 == 0 = []
  | otherwise               = filter isPrime (pandigitales n)
 
-- Nota. La definición anterior se puede simplificar, ya que
--    ghci> [n | n <- [1..9], sum [1..n] `mod` 3 /= 0]
--    [1,4,7]
nPandigitalesPrimos :: Int -> [Int]
nPandigitalesPrimos n 
  | n `elem` [4,7] = filter isPrime (pandigitales n)
  | otherwise      = []
 
-- (pandigitales n) es la lista de los números pandigitales de n dígitos
-- ordenada de mayor a menor. Por ejemplo,
--    pandigitales 3  ==  [321,312,231,213,132,123]
pandigitales :: Int -> [Int]
pandigitales n = 
  reverse $ sort $ map digitosAentero (permutations [1..n])
 
-- (digitosAentero ns) es el número cuyos dígitos son ns. Por ejemplo,
--    digitosAentero [3,2,5]  ==  325
digitosAentero :: [Int] -> Int
digitosAentero = read . map intToDigit

Mayor capicúa producto de dos números de n cifras

Un capicúa es un número que es igual leído de izquierda a derecha que de derecha a izquierda.

Definir la función

   mayorCapicuaP :: Integer -> Integer

tal que (mayorCapicuaP n) es el mayor capicúa que es el producto de dos números de n cifras. Por ejemplo,

   mayorCapicuaP 2  ==  9009
   mayorCapicuaP 3  ==  906609
   mayorCapicuaP 4  ==  99000099
   mayorCapicuaP 5  ==  9966006699
   mayorCapicuaP 6  ==  999000000999
   mayorCapicuaP 7  ==  99956644665999

Soluciones

-- 1ª solución
-- ===========
 
mayorCapicuaP1 :: Integer -> Integer
mayorCapicuaP1 n = head (capicuasP n)
 
-- (capicuasP n) es la lista de las capicúas de 2*n cifras que
-- pueden escribirse como productos de dos números de n cifras. Por
-- ejemplo, Por ejemplo,
--    ghci> capicuasP 2
--    [9009,8448,8118,8008,7227,7007,6776,6336,6006,5775,5445,5335,
--     5225,5115,5005,4884,4774,4664,4554,4224,4004,3773,3663,3003,
--     2992,2772,2552,2442,2332,2112,2002,1881,1771,1551,1221,1001]
capicuasP n = [x | x <- capicuas n,
                        not (null (productosDosNumerosCifras n x))]
 
-- (capicuas n) es la lista de las capicúas de 2*n cifras de mayor a
-- menor. Por ejemplo, 
--    capicuas 1           ==  [99,88,77,66,55,44,33,22,11]
--    take 7 (capicuas 2)  ==  [9999,9889,9779,9669,9559,9449,9339]
capicuas :: Integer -> [Integer]
capicuas n = [capicua x | x <- numerosCifras n]
 
-- (numerosCifras n) es la lista de los números de n cifras de mayor a
-- menor. Por ejemplo,
--    numerosCifras 1           ==  [9,8,7,6,5,4,3,2,1]
--    take 7 (numerosCifras 2)  ==  [99,98,97,96,95,94,93]
--    take 7 (numerosCifras 3)  ==  [999,998,997,996,995,994,993]
numerosCifras :: Integer -> [Integer]
numerosCifras n = [a,a-1..b]
  where a = 10^n-1
        b = 10^(n-1) 
 
-- (capicua n) es la capicúa formada añadiendo el inverso de n a
--  continuación de n. Por ejemplo,
--    capicua 93  ==  9339
capicua :: Integer -> Integer
capicua n = read (xs ++ (reverse xs))
  where xs = show n
 
-- (productosDosNumerosCifras n x) es la lista de los números y de n
-- cifras tales que existe un z de n cifras y x es el producto de y por
-- z. Por ejemplo, 
--    productosDosNumerosCifras 2 9009  ==  [99,91]
productosDosNumerosCifras n x = [y | y <- numeros,
                                     mod x y == 0,
                                     div x y `elem` numeros]
  where numeros = numerosCifras n
 
-- 2ª solución
-- ===========
 
mayorCapicuaP2 :: Integer -> Integer
mayorCapicuaP2 n = maximum [x*y | x <- [a,a-1..b],
                                  y <- [a,a-1..b],
                                  esCapicua (x*y)] 
  where a = 10^n-1
        b = 10^(n-1)
 
-- (esCapicua x) se verifica si x es capicúa. Por ejemplo,
--    esCapicua 353  ==  True
--    esCapicua 357  ==  False
esCapicua :: Integer -> Bool
esCapicua n = xs == reverse xs
  where xs = show n
 
-- 3ª solución
-- ===========
 
mayorCapicuaP3 :: Integer -> Integer
mayorCapicuaP3 n = maximum [x*y | (x,y) <- pares a b, 
                                  esCapicua (x*y)] 
  where a = 10^n-1
        b = 10^(n-1)
 
-- (pares a b) es la lista de los pares de números entre a y b de forma
-- que su suma es decreciente. Por ejemplo,
--    pares 9 7  ==  [(9,9),(8,9),(8,8),(7,9),(7,8),(7,7)]
pares a b = [(x,z-x) | z <- [a1,a1-1..b1],
                       x <- [a,a-1..b],
                       x <= z-x, z-x <= a]
  where a1 = 2*a
        b1 = 2*b
 
-- 4ª solución
-- ===========
 
mayorCapicuaP4 :: Integer -> Integer
mayorCapicuaP4 n = maximum [x | y <- [a..b],
                                z <- [y..b],
                                let x = y * z,
                                let s = show x,
                                s == reverse s]
  where a = 10^(n-1)
        b = 10^n-1
 
-- 5ª solución
-- ===========
 
mayorCapicuaP5 :: Integer -> Integer
mayorCapicuaP5 n = maximum [x*y | (x,y) <- pares2 b a, esCapicua (x*y)]
  where a = 10^(n-1)
        b = 10^n-1
 
-- (pares2 a b) es la lista de los pares de números entre a y b de forma
-- que su suma es decreciente. Por ejemplo,
--    pares2 9 7  ==  [(9,9),(8,9),(8,8),(7,9),(7,8),(7,7)]
pares2 a b = [(x,y) | x <- [a,a-1..b], y <- [a,a-1..x]]
 
-- 6ª solución
-- ===========
 
mayorCapicuaP6 :: Integer -> Integer
mayorCapicuaP6 n = maximum [x*y | x <- [a..b], 
                                  y <- [x..b] , 
                                  esCapicua (x*y)]
  where a = 10^(n-1)
        b = 10^n-1
 
-- (cifras n) es la lista de las cifras de n en orden inverso. Por
-- ejemplo,  
--    cifras 325  == [5,2,3]
cifras :: Integer -> [Integer]
cifras n 
    | n < 10    = [n]
    | otherwise = (ultima n) : (cifras (quitarUltima n))
 
-- (ultima n) es la última cifra de n. Por ejemplo,
--    ultima 325  ==  5
ultima  :: Integer -> Integer
ultima n =  n - (n `div` 10)*10
 
-- (quitarUltima n) es el número obtenido al quitarle a n su última
-- cifra. Por ejemplo,
--    quitarUltima 325  =>  32 
quitarUltima :: Integer -> Integer
quitarUltima n = (n - (ultima n)) `div` 10
 
-- 7ª solución
-- ===========
 
mayorCapicuaP7 :: Integer -> Integer
mayorCapicuaP7 n = head [x | x <- capicuas n, esFactorizable x n]
 
-- (esFactorizable x n) se verifica si x se puede escribir como producto
-- de dos números de n dígitos. Por ejemplo,
--    esFactorizable 1219 2  ==  True
--    esFactorizable 1217 2  ==  False
esFactorizable x n = aux i x
  where b = 10^n-1
        i = floor (sqrt (fromIntegral x))
        aux i x | i > b          = False
                | x `mod` i == 0 = x `div` i < b 
                | otherwise      = aux (i+1) x
 
-- Comparación de eficiencia
-- =========================
 
--    λ> mayorCapicuaP1 3
--    906609
--    (0.07 secs, 18,248,224 bytes)
--    λ> mayorCapicuaP2 3
--    906609
--    (0.51 secs, 555,695,720 bytes)
--    λ> mayorCapicuaP3 3
--    906609
--    (0.96 secs, 780,794,768 bytes)
--    λ> mayorCapicuaP4 3
--    906609
--    (0.24 secs, 255,445,448 bytes)
--    λ> mayorCapicuaP5 3
--    906609
--    (0.33 secs, 317,304,080 bytes)
--    λ> mayorCapicuaP6 3
--    906609
--    (0.26 secs, 274,987,472 bytes)
--    λ> mayorCapicuaP7 3
--    906609
--    (0.02 secs, 1,807,720 bytes)
--    
--    λ> mayorCapicuaP1 5
--    9966006699
--    (9.90 secs, 6,349,454,544 bytes)
--    λ> mayorCapicuaP7 5
--    9966006699
--    (0.06 secs, 15,958,616 bytes)

Suma de los elementos de las diagonales matrices espirales

Empezando con el número 1 y moviéndose en el sentido de las agujas del reloj se obtienen las matrices espirales

   |1 2|   |7 8 9|   | 7  8  9 10|   |21 22 23 24 25|
   |4 3|   |6 1 2|   | 6  1  2 11|   |20  7  8  9 10|
           |5 4 3|   | 5  4  3 12|   |19  6  1  2 11|
                     |16 15 14 13|   |18  5  4  3 12|
                                     |17 16 15 14 13|

La suma los elementos de sus diagonales es

+ en la 2x2: 1+3+2+4               =  10
+ en la 3x3: 1+3+5+7+9             =  25
+ en la 4x4: 1+2+3+4+7+10+13+16    =  56
+ en la 5x5: 1+3+5+7+9+13+17+21+25 = 101

Definir la función

   sumaDiagonales :: Integer -> Integer

tal que (sumaDiagonales n) es la suma de los elementos en las diagonales de la matriz espiral de orden nxn. Por ejemplo.

   sumaDiagonales 1         ==  1
   sumaDiagonales 2         ==  10
   sumaDiagonales 3         ==  25
   sumaDiagonales 4         ==  56
   sumaDiagonales 5         ==  101
   sumaDiagonales (10^6)    ==  666667166668000000
   sumaDiagonales (1+10^6)  ==  666669166671000001
 
   sumaDiagonales (10^2)  ==         671800
   sumaDiagonales (10^3)  ==        667168000
   sumaDiagonales (10^4)  ==       666716680000
   sumaDiagonales (10^5)  ==      666671666800000
   sumaDiagonales (10^6)  ==     666667166668000000
   sumaDiagonales (10^7)  ==    666666716666680000000
   sumaDiagonales (10^8)  ==   666666671666666800000000
   sumaDiagonales (10^9)  ==  666666667166666668000000000

Comprobar con QuickCheck que el último dígito de (sumaDiagonales n) es 0, 4 ó 6 si n es par y es 1, 5 ó 7 en caso contrario.

Soluciones

import Test.QuickCheck
 
-- 1ª solución
-- ===========
 
sumaDiagonales :: Integer -> Integer
sumaDiagonales = sum . elementosEnDiagonales
 
-- (elementosEnDiagonales n) es la lista de los elementos en las
-- diagonales de la matriz espiral de orden nxn. Por ejemplo,
--    elementosEnDiagonales 1  ==  [1]
--    elementosEnDiagonales 2  ==  [1,2,3,4]
--    elementosEnDiagonales 3  ==  [1,3,5,7,9]
--    elementosEnDiagonales 4  ==  [1,2,3,4,7,10,13,16]
--    elementosEnDiagonales 5  ==  [1,3,5,7,9,13,17,21,25]
elementosEnDiagonales :: Integer -> [Integer]
elementosEnDiagonales n 
  | even n    = tail (scanl (+) 0 (concatMap (replicate 4) [1,3..n-1]))
  | otherwise = scanl (+) 1 (concatMap (replicate 4) [2,4..n-1])
 
-- 2ª solución
-- ===========
 
sumaDiagonales2 :: Integer -> Integer
sumaDiagonales2 n
  | even n    = (-1) + n `div` 2 + sum [2*k^2-k+1 | k <- [0..n]]
  | otherwise = 1 + sum [4*k^2-6*k+6 | k <- [3,5..n]]
 
-- 3ª solución
-- ===========
 
sumaDiagonales3 :: Integer -> Integer
sumaDiagonales3 n
  | even n    = n * (4*n^2 + 3*n + 8) `div` 6
  | otherwise = (4*n^3 + 3*n^2 + 8*n - 9) `div` 6
 
-- Equivalencia de las definiciones
-- ================================
 
-- La propiedad es
prop_sumaDiagonales_equiv :: (Positive Integer) -> Bool
prop_sumaDiagonales_equiv (Positive n) =
  all (== sumaDiagonales n) [ sumaDiagonales2 n 
                            , sumaDiagonales3 n]
 
-- La comprobación es
--    λ> quickCheck prop_sumaDiagonales_equiv
--    +++ OK, passed 100 tests.
 
-- Comparación de eficiencia
-- =========================
 
-- La comparación es
--    λ> sumaDiagonales (2*10^6)
--    5333335333336000000
--    (2.30 secs, 1,521,955,848 bytes)
--    λ> sumaDiagonales2 (2*10^6)
--    5333335333336000000
--    (2.77 secs, 1,971,411,440 bytes)
--    λ> sumaDiagonales3 (2*10^6)
--    5333335333336000000
--    (0.01 secs, 139,520 bytes)
 
-- Propiedad
-- =========
 
-- La propiedad es
prop_sumaDiagonales :: (Positive Integer) -> Bool
prop_sumaDiagonales (Positive n) 
  | even n    = x `elem` [0,4,6] 
  | otherwise = x `elem` [1,5,7] 
  where x = sumaDiagonales n `mod` 10
 
-- La comprobación es
--    λ> quickCheck prop_sumaDiagonales
--    +++ OK, passed 100 tests.

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Pensamiento

“Un matemático que no sea también algo de poeta nunca será un matemático perfecto.”

Karl Weierstrass.

Pandemia

¡El mundo está en cuarentena! Hay una nueva pandemia que lucha contra la humanidad. Cada continente está aislado de los demás, pero las personas infectadas se han propagado antes de la advertencia.

En este problema se representará el mundo por una cadena como la siguiente

   "01000000X000X011X0X"

donde 0 representa no infectado, 1 representa infectado y X representa un océano

Las reglas de propagación son:

  • El virus no puede propagarse al otro lado de un océano.
  • Si una persona se infecta, todas las personas de este continente se infectan también.
  • El primer y el último continente no están conectados.

El problema consiste en encontrar el porcentaje de la población humana que se infectó al final. Por ejemplo,

   inicio:     "01000000X000X011X0X"
   final:      "11111111X000X111X0X"
   total:      15
   infectados: 11
   porcentaje: 100*11/15 = 73.33333333333333

Definir la función

   porcentajeInfectados :: String -> Double

tal que (porcentajeInfectados xs) es el porcentaje final de infectados para el mapa inicial xs. Por ejemplo,

   porcentajeInfectados "01000000X000X011X0X"  == 73.33333333333333
   porcentajeInfectados "01X000X010X011XX"     == 72.72727272727273
   porcentajeInfectados "XXXXX"                == 0.0
   porcentajeInfectados "0000000010"           == 100.0
   porcentajeInfectados "X00X000000X10X0100"   == 42.857142857142854

Soluciones

import Data.List (genericLength)
import Data.List.Split (splitOn)
 
-- 1ª solución
-- ===========
 
porcentajeInfectados :: String -> Double
porcentajeInfectados xs
  | nh == 0   = 0
  | otherwise = 100 * ni / nh
  where ni = fromIntegral (numeroInfectados xs)
        nh = fromIntegral (numeroHabitantes xs)
 
-- (continentes xs) es la lista de las poblaciones de los continentes
-- del mapa xs. Por ejemplo,
--    continentes "01000000X000X011X0X" == ["01000000","000","011","0"]
--    continentes "01X000X010X011XX"    == ["01","000","010","011"]
--    continentes "XXXXX"               == [""]
--    continentes "0000000010"          == ["0000000010"]
--    continentes "X00X000000X10X0100"  == ["","00","000000","10","0100"]
continentes :: String -> [String]
continentes [] = []
continentes xs = as : continentes (dropWhile (=='X') bs)
  where (as,bs) = break (=='X') xs
 
-- (numeroInfectados xs) es el número final de infectados a partir del
-- mapa xs. Por ejemplo,
--    numeroInfectados "01000000X000X011X0X"  ==  11
numeroInfectados :: String -> Int
numeroInfectados xs =
  sum [length ys | ys <- continentes xs
                 , '1' `elem` ys]
 
-- (numeroHabitantes xs) es el número final de habitantes del mapa
-- xs. Por ejemplo, 
--    numeroHabitantes "01000000X000X011X0X"  ==  15
numeroHabitantes :: String -> Int
numeroHabitantes xs = length (filter (/='X') xs)
 
-- 2ª solución
-- ===========
 
porcentajeInfectados2 :: String -> Double
porcentajeInfectados2 xs
  | nh == 0   = 0
  | otherwise = 100 * ni / nh
  where ni = sum [genericLength ys | ys <- splitOn "X" xs, '1' `elem` ys]
        nh = genericLength (filter (/='X') xs)

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Pensamiento

“El avance de las matemáticas puede ser visto como un progreso de lo infinito a lo finito.”

Gian-Carlo Rota.

Nodos y conexiones de un grafo

Un grafo no dirigido se representa por la lista de sus arcos. Por ejemplo, el grafo

             1  -- 2 -- 4
                   | \  |
                   |  \ |
                   3 -- 5

se representa por [(1,2),(2,3),(2,4),(2,5),(3,5),(4,5)].

Se define el tipo de grafo por

   type Grafo a = [(a,a)]

Definir las funciones

   nodos      :: Eq a => Grafo a -> [a]
   conectados :: Eq a => Grafo a -> a -> a -> Bool

tales que

  • (nodos g) es la lista de los nodos del grafo g. Por ejemplo,
     nodos [(1,2),(2,3),(2,4),(2,5),(3,5),(4,5)]  ==  [1,2,3,4,5]
  • (conectados g x y) se verifica si el grafo no dirigido g posee un arco con extremos x e y. Por ejemplo,
     conectados [(1,2),(2,3),(2,4),(2,5),(3,5),(4,5)] 3 2  ==  True
     conectados [(1,2),(2,3),(2,4),(2,5),(3,5),(4,5)] 2 3  ==  True
     conectados [(1,2),(2,3),(2,4),(2,5),(3,5),(4,5)] 3 4  ==  False

Nota: Escribir la solución en el módulo Grafo para poderlo usar en los siguientes ejercicios.

module Grafo where
 
import Data.List (nub)
 
type Grafo a = [(a,a)]
 
nodos :: Eq a => Grafo a -> [a]
nodos g = nub (concat [[x,y] | (x,y) <- g])
 
conectados :: Eq a => Grafo a -> a -> a -> Bool
conectados g x y =
  (x,y) `elem` g || (y,x) `elem` g

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang=”haskell”> y otra con </pre>

Soluciones

Pensamiento

“La elegancia de un teorema es directamente proporcional al número de ideas que puedes ver en él e inversamente proporcional al esfuerzo que requiere verlas.”

George Pólya.

Modelos de FNC (fórmulas en forma normal conjuntiva)

Nota: En este ejercicio usaremos las mismas notaciones que en anterior importando los módulos Interpretaciones_de_FNC y Evaluacion_de_FNC

Una interpretación I es un modelo de un literal L si el valor de L en I es verdadero. Por ejemplo, la interpretación [2,5]

  • es modelo del literal x(2) (porque 2 ∈ [2,5])
  • no es modelo del literal x(3) (porque 3 ∉ [2,5])
  • es modelo del literal -x(4) (porque 4 ∉ [2,5])

Una interpretación I es un modelo de una cláusula C si el valor de C en I es verdadero. Por ejemplo, la interpretación [2,5]

  • es modelo de la cláusula (x(2) v x(3)) (porque x(2) es verdadero)
  • no es modelo de la cláusula (x(3) v x(4)) (porque x(3) y x(4) son falsos)

Una interpretación I es un modelo de una FNC F si el valor de F en I es verdadero. Por ejemplo, la interpretación [2,5]

  • es modelo de la FNC ((x(2) v x(5)) & (-x(4) v x(3)) porque lo es de sus dos cláusulas.

Definir las siguientes funciones

   esModeloLiteral  :: Interpretacion -> Literal -> Bool
   esModeloClausula :: Interpretacion -> Clausula -> Bool
   esModelo         :: Interpretacion -> FNC -> Bool
   modelosClausula  :: Clausula -> [Interpretacion]
   modelos          :: FNC -> [Interpretacion]

tales que

  • (esModeloLiteral i l) se verifica si i es modelo del literal l. Por ejemplo,
     esModeloLiteral [3,5] 3     ==  True
     esModeloLiteral [3,5] 4     ==  False
     esModeloLiteral [3,5] (-3)  ==  False
     esModeloLiteral [3,5] (-4)  ==  True
  • (esModeloClausula i c) se verifica si i es modelo de la cláusula c. Por ejemplo,
     esModeloClausula [3,5] [2,3,-5]  ==  True
     esModeloClausula [3,5] [2,4,-1]  ==  True
     esModeloClausula [3,5] [2,4,1]   ==  False
  • (esModelo i f) se verifica si i es modelo de la fórmula f. Por ejemplo,
     esModelo [1,3] [[1,-2],[3]]  ==  True
     esModelo [1]   [[1,-2],[3]]  ==  False
     esModelo [1]   []            ==  True
  • (modelosClausula c) es la lista de los modelos de la cláusula c. Por ejemplo,
     modelosClausula [-1,2]  ==  [[],[2],[1,2]]
     modelosClausula [-1,1]  ==  [[],[1]]
     modelosClausula []      ==  []
  • (modelos f) es la lista de los modelos de la fórmula f. Por ejemplo,
     modelos [[-1,2],[-2,1]]    ==  [[],[1,2]]
     modelos [[-1,2],[-2],[1]]  ==  []
     modelos [[1,-1,2]]         ==  [[],[1],[2],[1,2]]

Nota: Escribir la solución en el módulo Modelos_de_FNC para poderlo usar en los siguientes ejercicios.

Soluciones

module Modelos_de_FNC where
 
import Interpretaciones_de_FNC 
import Evaluacion_de_FNC
 
esModeloLiteral :: Interpretacion -> Literal -> Bool
esModeloLiteral i l
  | l > 0     = l `elem` i
  | otherwise = negate l `notElem` i
 
esModeloClausula :: Interpretacion -> Clausula -> Bool
esModeloClausula i = any (esModeloLiteral i)
 
esModelo :: Interpretacion -> FNC -> Bool
esModelo i = all (esModeloClausula i)
 
modelosClausula :: Clausula -> [Interpretacion]
modelosClausula c =
  [i | i <- interpretacionesClausula c,
       esModeloClausula i c]
 
modelos :: FNC -> [Interpretacion]
modelos f =
  [i | i <- interpretaciones f,
       esModelo i f]

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang=”haskell”> y otra con </pre>

Pensamiento

“Por muy correcto que parezca un teorema matemático, nunca hay que conformarse con que no haya algo imperfecto en él hasta obtener la impresión de qie es bello.”

George Boole.

Evaluación de FNC (fórmulas en forma normal conjuntiva)

Una FNC (fórmula en forma normal conjuntiva) es una conjunción de cláusulas, donde una cláusula es una disyunción de literales y un literal es un átomo o su negación. Por ejemplo,

   (x(1) v -x(3)) & x(2) & (-x(2) v x(3) v x(1))

es una FNC con tres clásulas tales que la primera cláusula tiene 2 literales (x(1) y -x(3)), la segunda tiene 1 (x(2)) y la tercera tiene 3 (-x(2), x(3) y x(1)).

Usaremos las siguientes representaciones:

  • Los átomos se representan por enteros positivos. Por ejemplo, 3 representa x(3).
  • Los literales se representan por enteros. Por ejemplo, 3 representa el literal positivo x(3) y -5 el literal negativo -x(5).
  • Una cláusula es una lista de literales que representa la disyunción se sus literales. Por ejemplo, [3,2,-4] representa a (x(3) v x(2) v -x(4)).
  • Una fórmula en forma normal conjuntiva (FNC) es una lista de cláusulas que representa la conjunción de sus cláusulas. Por ejemplo, [[3,2],[-1,2,5]] representa a ((x(3) v x(2)) & (-x(1) v x(2) v x(5))).

Una interpretación I es un conjunto de átomos. Se supone que los átomos de I son verdaderos y los restantes son falsos. Por ejemplo, en la interpretación [2,5]

  • el literal x(2) es verdadero (porque 2 ∈ [2,5])
  • el literal x(3) es falso (porque 3 ∉ [2,5])
  • el literal -x(4) es verdadero (porque 4 ∉ [2,5])
  • la cláusula (x(2) v x(3)) es verdadera (porque x(2) es verdadero)
  • la cláusula (x(3) v x(4)) es falsa (porque x(3) y x(4) son falsos)
  • la FNC ((x(2) v x(5)) & (-x(4) v x(3)) es verdadera porque lo son sus dos cláusulas

En el ejercicio se usarán los siguientes tipos de datos

   type Atomo          = Int
   type Literal        = Int
   type Clausula       = [Literal]
   type FNC            = [Clausula]
   type Interpretacion = [Atomo]

Definir las siguientes funciones

   valorLiteral  :: Interpretacion -> Literal -> Bool
   valorClausula :: Interpretacion -> Clausula -> Bool
   valor         :: Interpretacion -> FNC -> Bool

tales que

  • (valorLiteral i l) es el valor del literal l en la interpretación i. Por ejemplo,
     valorLiteral [3,5] 3     ==  True
     valorLiteral [3,5] 4     ==  False
     valorLiteral [3,5] (-3)  ==  False
     valorLiteral [3,5] (-4)  ==  True
  • (valorClausula i c) es el valor de la cláusula c en la interpretación i. Por ejemplo,
     valorClausula [3,5] [2,3,-5]  ==  True
     valorClausula [3,5] [2,4,-1]  ==  True
     valorClausula [3,5] [2,4,1]   ==  False
  • (valor i f) es el valor de la fórmula en FNC f en la interpretación i. Por ejemplo,
     valor [1,3] [[1,-2],[3]]  ==  True
     valor [1]   [[1,-2],[3]]  ==  False
     valor [1]   []            ==  True

Nota: Escribir la solución en el módulo Evaluacion_de_FNC para poderlo usar en los siguientes ejercicios.

Soluciones

module Evaluacion_de_FNC where
 
type Atomo          = Int
type Literal        = Int
type Clausula       = [Literal]
type FNC            = [Clausula]
type Interpretacion = [Atomo]
 
-- Definición de valorLiteral
-- ==========================
 
valorLiteral :: Interpretacion -> Literal -> Bool
valorLiteral i l
  | l > 0     = l `elem` i
  | otherwise = negate l `notElem` i
 
-- Definiciones de valorClausula
-- =============================
 
-- 1ª definición
valorClausula :: Interpretacion -> Clausula -> Bool
valorClausula i c = or [valorLiteral i l | l <- c]
 
-- 2ª definición
valorClausula2 :: Interpretacion -> Clausula -> Bool
valorClausula2 i = any (valorLiteral i)
 
-- Definiciones de valor de FNC
-- ============================
 
-- 1ª definición
valor :: Interpretacion -> FNC -> Bool
valor i f = and [valorClausula i c | c <- f]
 
-- 2ª definición
valor2 :: Interpretacion -> FNC -> Bool
valor2 i = all (valorClausula i)

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang=”haskell”> y otra con </pre>

Pensamiento

“Todo buen matemático es al menos medio filósofo, y todo buen filósofo es al menos medio matemático.”

Gottlob Frege.

Conjetura de Collatz generalizada

Sea p un número primo. Toma un número natural positivo, si es divisible entre un número primo menor que p divídelo entre el menor de dicho divisores, y en otro caso multiplícalo por p y súmale uno; si el resultado no es igual a uno, repite el proceso. Por ejemplo, para p = 7 y empezando en 42 el proceso es

   42
   -> 21   [= 42/2]
   -> 7    [= 21/3]
   -> 50   [= 7*7+1]
   -> 25   [= 50/5]
   -> 5    [= 25/5]
   -> 1    [= 5/5]

La conjetura de Collatz generalizada afirma que este proceso siempre acaba en un número finito de pasos.

Definir la función

   collatzGeneral :: Integer -> Integer -> [Integer]

tal que (collatzGeneral p x) es la sucesión de los elementos obtenidos en el proceso anterior para el primo p enpezando en x. Por ejemplo,

   take 15 (collatzGeneral 7 42) == [42,21,7,50,25,5,1,8,4,2,1,8,4,2,1]
   take 15 (collatzGeneral 3  6) == [6,3,10,5,16,8,4,2,1,4,2,1,4,2,1]
   take 15 (collatzGeneral 5  6) == [6,3,1,6,3,1,6,3,1,6,3,1,6,3,1]
   take 15 (collatzGeneral 7  6) == [6,3,1,8,4,2,1,8,4,2,1,8,4,2,1]
   take 15 (collatzGeneral 9  6) == [6,3,1,10,5,1,10,5,1,10,5,1,10,5,1]

Comprobar con QuickCheck que se verifica la conjetura de Collatz generalizada; es decir, para todos enteros positivos n, x si p es el primo n-ésimo entonces 1 pertenece a (collatzGeneral p x).

Nota: El ejercicio etá basado en el artículo Los primos de la conjetura de Collatz publicado la semana pasada por Francisco R. Villatoro en su blog La Ciencia de la Mula Francis.

Soluciones

import Data.Numbers.Primes (primeFactors, primes)
import Test.QuickCheck
 
collatzGeneral :: Integer -> Integer -> [Integer]
collatzGeneral p x =
  iterate (siguiente p) x
 
siguiente :: Integer -> Integer -> Integer
siguiente p x 
  | null xs   = p * x + 1
  | otherwise = x `div` head xs
  where xs = takeWhile (<p) (primeFactors x)
 
prop_collatzGeneral :: Int -> Integer -> Property
prop_collatzGeneral n x =
  n > 0 && x > 0 ==>
  1 `elem` collatzGeneral p x
  where p = primes !! n 
 
-- La comprobación es
--    λ> quickCheck prop_collatzGeneral
--    +++ OK, passed 100 tests.

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang=”haskell”> y otra con </pre>

Pensamiento

“Las matemáticas son la ciencia que utiliza palabras fáciles para ideas difíciles.”

Edward Kasner y James R. Newman

Primer elemento repetido

Definir la función

   primerRepetido :: Eq a => [a] -> Maybe a

tal que (primerRepetido xs) es justo el primer elemento repetido de la lista xs o Nothing si no tiene elementos repetidos. Por ejemplo,

   primerRepetido [3,7,5,7,2]  ==  Just 7
   primerRepetido [3,9,5,6,2]  ==  Nothing

Soluciones

primerRepetido :: Eq a => [a] -> Maybe a
primerRepetido xs = aux xs []
  where
    aux [] _                     = Nothing
    aux (x:xs') ys | x `elem` ys = Just x
                   | otherwise   = aux xs' (x:ys)

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang=”haskell”> y otra con </pre>

Pensamiento

“¿Cuál es el núcleo central de la ciencia de la computación? ¿Qué es lo que lo diferencia de los otros temas con los que se relaciona? ¿Qué es lo que el hilo de unión que reúne estas ramas dispares en una sola disciplina? Mi respuesta a estas preguntas es simple: es el arte de programar un ordenador. Es el arte de diseñar métodos eficientes y elegantes para conseguir que un ordenador resuelva problemas, teóricos o prácticos, pequeños o grandes, simples o complejos. Es el arte de traducir estos diseños programas correctos y eficientes.”

Tony Hoare.