Números amigos

Dos números amigos son dos números positivos distintos tales que la suma de los divisores propios de cada uno es igual al otro. Los divisores propios de un número incluyen la unidad pero no al propio número. Por ejemplo, divisores propios de 220 son 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 y 110. La suma de estos números equivale a 284. A su vez, los divisores propios de 284 son 1, 2, 4, 71 y 142. Su suma equivale a 220. Por tanto, 220 y 284 son amigos.

Definir la función

tal que amigos x y se verifica si los números x e y son amigos. Por ejemplo,

Read More «Números amigos»

Huecos maximales entre primos

El hueco de un número primo p es la distancia entre p y primo siguiente de p. Por ejemplo, el hueco de 7 es 4 porque el primo siguiente de 7 es 11 y 4 = 11-7. Los huecos de los primeros números son

El hueco de un número primo p es maximal si es mayor que los huecos de todos los números menores que p. Por ejemplo, 4 es un hueco maximal de 7 ya que los huecos de los primos menores que 7 son 1 y 2 y ambos son menores que 4. La tabla de los primeros huecos maximales es

Definir la sucesión

cuyos elementos son los números primos con huecos maximales junto son sus huecos. Por ejemplo,

Read More «Huecos maximales entre primos»

Números primos de Hilbert

Un número de Hilbert es un entero positivo de la forma 4n+1. Los primeros números de Hilbert son 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, 73, 77, 81, 85, 89, 93, 97, …

Un primo de Hilbert es un número de Hilbert n que no es divisible por ningún número de Hilbert menor que n (salvo el 1). Los primeros primos de Hilbert son 5, 9, 13, 17, 21, 29, 33, 37, 41, 49, 53, 57, 61, 69, 73, 77, 89, 93, 97, 101, 109, 113, 121, 129, 133, 137, 141, 149, 157, 161, 173, 177, 181, 193, 197, …

Definir la sucesión

tal que sus elementos son los primos de Hilbert. Por ejemplo,

Read More «Números primos de Hilbert»

Suma de los cuadrados de los primeros números naturales

Definir la función

tal que sumaDeCuadrados n es la suma de los cuadrados de los primeros n números; es decir, 1² + 2² + … + n². Por ejemplo,

Soluciones

A continuación se muestran las soluciones en Haskell y las soluciones en Python.


Soluciones en Haskell

El código se encuentra en GitHub.


Soluciones en Python

El código se encuentra en GitHub.

Números de Pentanacci

Los números de Fibonacci se definen mediante las ecuaciones

Los primeros números de Fibonacci son

Una generalización de los anteriores son los números de Pentanacci definidos por las siguientes ecuaciones

Los primeros números de Pentanacci son

Definir la sucesión

cuyos elementos son los números de Pentanacci. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

Referencias

Número de representaciones de n como suma de dos cuadrados


Sea n un número natural cuya factorización prima es
$$n = 2^{a} \times p(1)^{b(1)} \times \dots \times p(n)^{b(n)} \times q(1)^{c(1)} \times \dots \times q(m)^{c(m)}$$
donde los p(i) son los divisores primos de n congruentes con 3 módulo 4 y los q(j) son los divisores primos de n congruentes con 1 módulo 4. Entonces, el número de forma de descomponer n como suma de dos
cuadrados es 0, si algún b(i) es impar y es el techo (es decir, el número entero más próximo por exceso) de
$$\frac{(1+c(1)) \times \dots \times (1+c(m))}{2}$$
en caso contrario. Por ejemplo, el número
$$2^{3} \times (3^{9} \times 7^{8}) \times (5^{3} \times 13^{6})$$
no se puede descomponer como sumas de dos cuadrados (porque el exponente de 3 es impar) y el número
$$2^{3} \times (3^{2} \times 7^{8}) \times (5^{3} \times 13^{6})$$
tiene 14 descomposiciones como suma de dos cuadrados (porque los exponentes de 3 y 7 son pares y el techo de
$$\frac{(1+3) \times (1+6)}{2}$$
es 14).

Definir la función

tal que (nRepresentaciones n) es el número de formas de representar n como suma de dos cuadrados. Por ejemplo,

Usando la función representaciones del ejercicio anterior, comprobar con QuickCheck la siguiente propiedad

Soluciones

El código se encuentra en GitHub.

Referencias

Representaciones de un número como suma de dos cuadrados

Definir la función

tal que (representaciones n) es la lista de pares de números naturales (x,y) tales que n = x^2 + y^2. Por ejemplo.

Comprobar con QuickCheck que un número natural n se puede como suma de dos cuadrados si, y sólo si, en la factorización prima de n todos los exponentes de sus factores primos congruentes con 3 módulo 4 son pares.

Soluciones

El código se encuentra en GitHub.

Factorizaciones de números de Hilbert

Un número de Hilbert es un entero positivo de la forma 4n+1. Los primeros números de Hilbert son 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, …

Un primo de Hilbert es un número de Hilbert n que no es por ningún número de Hilbert menor que n (salvo el 1). Los primeros primos de Hilbert son 5, 9, 13, 17, 21, 29, 33, 37, 41, 49, 53, 57, 61, 69, 73, 77, 89, 93, 97, 101, 109, 113, 121, 129, 133, 137, …

Definir la función

tal que (factorizacionesH n) es la listas de primos de Hilbert cuyo producto es el número de Hilbert n. Por ejemplo,

Comprobar con QuickCheck que todos los números de Hilbert son factorizables como producto de primos de Hilbert (aunque la factorización, como para el 441, puede no ser única).

Soluciones

El código se encuentra en GitHub.

Referencias

Basado en el artículo Failure of unique factorization (A example of the failure of the fundamental theorem of arithmetic) de R.J. Lipton en el blog Gödel’s Lost Letter and P=NP.

Otras referencias

Números primos de Hilbert

Un número de Hilbert es un positivo de la forma 4n+1. Los primeros números de Hilbert son 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, 73, 77, 81, 85, 89, 93, 97, …

Un primo de Hilbert es un número de Hilbert n que no es por ningún número de Hilbert menor que n (salvo el 1). Los primeros primos de Hilbert son 5, 9, 13, 17, 21, 29, 33, 37, 41, 49, 53, 57, 61, 69, 73, 77, 89, 93, 97, 101, 109, 113, 121, 129, 133, 137, 141, 149, 157, 161, 173, 177, 181, 193, 197, …

Definir la sucesión

tal que sus elementos son los primos de Hilbert. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

Sumas de dos primos

Definir la sucesión

cuyos elementos son los números que se pueden escribir como suma de dos números primos. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

Referencia

La sucesión de Thue-Morse

La serie de Thue-Morse comienza con el término [0] y sus siguientes términos se construyen añadiéndole al anterior su complementario. Los primeros términos de la serie son

De esta forma se va formando una sucesión

que se conoce como la sucesión de Thue-Morse.

Definir la sucesión

cuyos elementos son los de la sucesión de Thue-Morse. Por ejemplo,

Comprobar con QuickCheck que si s(n) representa el término n-ésimo de la sucesión de Thue-Morse, entonces

Soluciones

El código se encuentra en GitHub.

Referencias

La serie de Thue-Morse

La serie de Thue-Morse comienza con el término [0] y sus siguientes términos se construyen añadiéndole al anterior su complementario (es decir, la lista obtenida cambiando el 0 por 1 y el 1 por 0). Los primeros términos de la serie son

Definir la lista

tal que sus elementos son los términos de la serie de Thue-Morse. Por ejemplo,

Soluciones

El código se encuentra en [GitHub](https://github.com/jaalonso/Exercitium/blob/main/src/

Referencias

Números belgas

Un número n es k-belga si la sucesión cuyo primer elemento es k y cuyos elementos se obtienen sumando reiteradamente las cifras de n contiene a n.

El 18 es 0-belga, porque a partir del 0 vamos a ir sumando sucesivamente 1, 8, 1, 8, … hasta llegar o sobrepasar el 18: 0, 1, 9, 10, 18, … Como se alcanza el 18, resulta que el 18 es 0-belga.

El 19 no es 1-belga, porque a partir del 1 vamos a ir sucesivamente 1, 9, 1, 9, … hasta llegar o sobrepasar el 18: 0, 1, 10, 11, 20, 21, … Como no se alcanza el 19, resulta que el 19 no es 1-belga.

Definir la función

tal que (esBelga k n) se verifica si n es k-belga. Por ejemplo,

Comprobar con QuickCheck que para todo número entero positivo n, si k es el resto de n entre la suma de los dígitos de n, entonces n es k-belga.

Soluciones

Referencias

Basado en el artículo Números belgas del blog Números y hoja de cálculo de Antonio Roldán Martínez.

El código se encuentra en GitHub.

Huecos maximales entre primos

El hueco de un número primo p es la distancia entre p y primo siguiente de p. Por ejemplo, el hueco de 7 es 4 porque el primo siguiente de 7 es 11 y 4 = 11-7. Los huecos de los primeros números son

El hueco de un número primo p es maximal si es mayor que huecos de todos los números menores que p. Por ejemplo, 4 es un hueco maximal de 7 ya que los huecos de los primos menores que 7 son 1 y 2 y ambos son menores que 4. La tabla de los primeros huecos maximales es

Definir la sucesión

cuyos elementos son los números primos con huecos maximales junto son sus huecos. Por ejemplo,

Soluciones

Referencias

Basado en el ejercicio Maximal prime gaps de
Programming Praxis.

Otras referencias

El código se encuentra en GitHub.

La función indicatriz de Euler

La indicatriz de Euler (también función φ de Euler) es una función importante en teoría de números. Si n es un entero positivo, entonces φ(n) se define como el número de enteros positivos menores o iguales a n y coprimos con n. Por ejemplo, φ(36) = 12 ya que los números menores o iguales a 36 y coprimos con 36 son doce: 1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, y 35.

Definir la función

tal que (phi n) es igual a φ(n). Por ejemplo,

Comprobar con QuickCheck que, para todo n > 0, φ(10^n) tiene n dígitos.

Soluciones

El código se encuentra en GitHub.

Sucesión de suma de cuadrados de los dígitos

Definir la función

tal que (sucSumaCuadradosDigitos n) es la sucesión cuyo primer término es n y los restantes se obtienen sumando los cuadrados de los dígitos de su término anterior. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

Potencias perfectas

Un número natural n es una potencia perfecta si existen dos números naturales m > 1 y k > 1 tales que n = m^k. Las primeras potencias perfectas son

Definir la sucesión

cuyos términos son las potencias perfectas. Por ejemplo,

Definir el procedimiento

tal que (grafica n) es la representación gráfica de las n primeras potencias perfectas. Por ejemplo, para (grafica 30) dibuja

Soluciones

El código se encuentra en GitHub.

Sumas alternas de factoriales

Las primeras sumas alternas de los factoriales son números primos; en efecto,

son primos, pero

no es primo.

Definir las funciones

tales que

  • (sumaAlterna n) es la suma alterna de los factoriales desde n hasta 1. Por ejemplo,

  • sumasAlternas es la sucesión de las sumas alternas de factoriales. Por ejemplo,

  • conSumaAlternaPrima es la sucesión de los números cuya suma alterna de factoriales es prima. Por ejemplo,

Soluciones