Menu Close

La sucesión de Thue-Morse

La serie de Thue-Morse comienza con el término [0] y sus siguientes términos se construyen añadiéndole al anterior su complementario. Los primeros términos de la serie son

   [0]
   [0,1]
   [0,1,1,0]
   [0,1,1,0,1,0,0,1]
   [0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0]

De esta forma se va formando una sucesión

   0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,...

que se conoce como la sucesión de Thue-Morse.

Definir la sucesión

   sucThueMorse :: [Int]

cuyos elementos son los de la sucesión de Thue-Morse. Por ejemplo,

   λ> take 30 sucThueMorse
   [0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0,1,0]
   λ> map (sucThueMorse4 !!) [1234567..1234596] 
   [1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,1,0,0,1,0]
   λ> map (sucThueMorse4 !!) [4000000..4000030] 
   [1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1]

Comprobar con QuickCheck que si s(n) representa el término n-ésimo de la sucesión de Thue-Morse, entonces

   s(2n)   = s(n)
   s(2n+1) = 1 - s(n)

Soluciones

import Test.QuickCheck
 
-- 1ª solución
-- ===========
 
sucThueMorse1 :: [Int]
sucThueMorse1 = map termSucThueMorse1 [0..]
 
-- (termSucThueMorse1 n) es el n-ésimo término de la sucesión de
-- Thue-Morse. Por ejemplo, 
--    termSucThueMorse1 0  ==  0
--    termSucThueMorse1 1  ==  1
--    termSucThueMorse1 2  ==  1
--    termSucThueMorse1 3  ==  0
--    termSucThueMorse1 4  ==  1
termSucThueMorse1 :: Int -> Int
termSucThueMorse1 0 = 0
termSucThueMorse1 n = 
  (serieThueMorse !! k) !! n
  where k = 1 + floor (logBase 2 (fromIntegral n))
 
-- serieThueMorse es la lista cuyos elementos son los términos de la
-- serie de Thue-Morse. Por ejemplo, 
--    λ> take 4 serieThueMorse3
--    [[0],[0,1],[0,1,1,0],[0,1,1,0,1,0,0,1]]
serieThueMorse :: [[Int]]
serieThueMorse = iterate paso [0]
  where paso xs = xs ++ map (1-) xs
 
-- 2ª solución
-- ===========
 
sucThueMorse2 :: [Int]
sucThueMorse2 = 
  0 : intercala (map (1-) sucThueMorse2) (tail sucThueMorse2)
 
-- (intercala xs ys) es la lista obtenida intercalando los elementos de
-- las listas infinitas xs e ys. Por ejemplo, 
--    take 10 (intercala [1,5..] [2,4..])  ==  [1,2,5,4,9,6,13,8,17,10]
intercala :: [a] -> [a] -> [a]
intercala (x:xs) ys = x : intercala ys xs 
 
-- 3ª solución
-- ===========
 
sucThueMorse3 :: [Int]
sucThueMorse3 = 0 : 1 : aux (tail sucThueMorse3) 
  where aux (x : xs) = x : (1 - x) : aux xs
 
 
 
-- 4ª solución
-- ===========
 
sucThueMorse4 :: [Int]
sucThueMorse4 = 0 : aux [1]
  where aux xs = xs ++ aux (xs ++ map (1-) xs) 
 
-- Comprobación de la propiedad
-- ============================
 
-- La propiedad es
prop_termSucThueMorse :: NonNegative Int -> Bool
prop_termSucThueMorse (NonNegative n) =
  sucThueMorse1 !! (2*n)   == sn &&
  sucThueMorse1 !! (2*n+1) == 1 - sn 
  where sn = sucThueMorse1 !! n
 
-- La comprobación es
--    λ> quickCheck prop_termSucThueMorse
--    +++ OK, passed 100 tests.
 
-- 5ª solución
-- ===========
 
sucThueMorse5 :: [Int]
sucThueMorse5 = map termSucThueMorse5 [0..]
 
-- (termSucThueMorse5 n) es el n-ésimo término de la sucesión de
-- Thue-Morse. Por ejemplo, 
--    termSucThueMorse5 0  ==  0
--    termSucThueMorse5 1  ==  1
--    termSucThueMorse5 2  ==  1
--    termSucThueMorse5 3  ==  0
--    termSucThueMorse5 4  ==  1
termSucThueMorse5 :: Int -> Int
termSucThueMorse5 0 = 0
termSucThueMorse5 n 
  | even n    = termSucThueMorse5 (n `div` 2)
  | otherwise = 1 - termSucThueMorse5 (n `div` 2)
 
-- Comprobación de equivalencia
-- ============================
 
-- La propiedad es
prop_sucThueMorse :: NonNegative Int -> Bool
prop_sucThueMorse (NonNegative n) =
  all (== sucThueMorse1 !! n)
      [sucThueMorse2 !! n,
       sucThueMorse3 !! n,
       sucThueMorse4 !! n,
       sucThueMorse5 !! n]
 
-- La comprobación es
--    λ> quickCheck prop_sucThueMorse
--    +++ OK, passed 100 tests.
 
-- Comparación de eficiencia
-- =========================
 
-- La comparación es
--    λ> sucThueMorse1 !! (10^7)
--    0
--    (3.28 secs, 3,420,080,168 bytes)
--    λ> sucThueMorse2 !! (10^7)
--    0
--    (3.01 secs, 1,720,549,640 bytes)
--    λ> sucThueMorse3 !! (10^7)
--    0
--    (1.80 secs, 1,360,550,040 bytes)
--    λ> sucThueMorse4 !! (10^7)
--    0
--    (0.88 secs, 1,254,772,768 bytes)
--    λ> sucThueMorse5 !! (10^7)
--    0
--    (0.62 secs, 1,600,557,072 bytes)

El código se encuentra en GitHub.

Referencias

Posted in Ejercicio

Escribe tu solución

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.