Numeración con base múltiple

Sea (b(i) | i ≥ 1) una sucesión infinita de números enteros mayores que 1. Entonces todo entero x mayor que cero se puede escribir de forma única como

donde cada x(i) satisface la condición 0 ≤ x(i) < b(i+1). Se dice que [x(n),x(n-1),…,x(2),x(1),x(0)] es la representación de x en la base (b(i)). Por ejemplo, la representación de 377 en la base (2, 6, 8, …) es [7,5,0,1] ya que

y, además, 0 ≤ 1 < 2, 0 ≤ 0 < 4, 0 ≤ 5 < 6 y 0 ≤ 7 < 8.

Definir las funciones

tales que

  • (decimalAmultiple bs x) es la representación del número x en la base bs. Por ejemplo,

  • (multipleAdecimal bs cs) es el número decimal cuya representación en la base bs es cs. Por ejemplo,

Comprobar con QuickCheck que se verifican las siguientes propiedades

  • Para cualquier base bs y cualquier entero positivo n,

  • Para cualquier base bs y cualquier entero positivo n, el coefiente i-ésimo de la representación múltiple de n en la base bs es un entero no negativo menos que el i-ésimo elemento de bs.

Soluciones

El código se encuentra en GitHub.

Matriz zigzagueante

La matriz zizagueante de orden n es la matriz cuadrada con n filas y n columnas y cuyos elementos son los n² primeros números naturales colocados de manera creciente a lo largo de las diagonales secundarias. Por ejemplo, La matriz zigzagueante de orden 5 es

La colocación de los elementos se puede ver gráficamente en esta figura

Definir la función

tal que (zigZag n) es la matriz zigzagueante de orden n. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

Densidades de números abundantes, perfectos y deficientes

La n-ésima densidad de un tipo de número es el cociente entre la cantidad de los números entre 1 y n que son del tipo considerado y n. Por ejemplo, la 7-ésima densidad de los múltiplos de 3 es 2/7 ya que entre los 7 primeros números sólo 2 son múltiplos de 3.

Definir las funciones

tales que

  • (densidades n) es la terna formada por la n-ésima densidad
    • de los números abundantes (es decir, para los que la suma de sus divisores propios es mayor que el número),
    • de los números perfectos (es decir, para los que la suma de sus divisores propios es mayor que el número) y
    • de los números deficientes (es decir, para los que la suma de sus divisores propios es menor que el número).

    Por ejemplo,

  • (graficas n) dibuja las gráficas de las k-ésimas densidades (para k entre 1 y n) de los números abundantes, de los números perfectos y de los números deficientes. Por ejemplo, (graficas 100) dibuja

    y (graficas 400) dibuja

Soluciones

El código se encuentra en GitHub.

Sumas de divisores propios

Definir la función

tal que (sumaDivisoresHasta n) es la lista de los pares (a,b) tales que a es un número entre 1 y n y b es la suma de los divisores propios de a. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

Parejas de números y divisores

Definir la función

tal que (divisoresHasta n) es la lista de los pares (a,b) tales que a es un número entre 2 y n y b es un divisor propio de a. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

Sumas de 4 primos

La conjetura de Waring sobre los números primos establece que todo número impar es primo o la suma de tres primos. La conjetura de Goldbach afirma que todo par mayor que 2 es la suma de dos números primos. Ambos ha estado abiertos durante más de 200 años. En este problema no se propone su solución, sino una tarea más simple: buscar una manera de expresar los enteros mayores que 7 como suma de exactamente cuatro números primos; es decir, definir la función

tal que (suma4primos n) es la lista de las cuádruplas crecientes (a,b,c,d) de números primos cuya suma es n (que se supone mayor que 7). Por ejemplo,

Comprobar con QuickCheck que todo entero mayor que 7 se puede escribir como suma de exactamente cuatro números primos.

Soluciones

El código se encuentra en GitHub.

Sucesión de sumas de dos números abundantes

Un número n es abundante si la suma de los divisores propios de n es mayor que n. El primer número abundante es el 12 (cuyos divisores propios son 1, 2, 3, 4 y 6 cuya suma es 16). Por tanto, el menor número que es la suma de dos números abundantes es el 24.

Definir la sucesión

cuyos elementos son los números que se pueden escribir como suma de dos números abundantes. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

Suma de divisores

Definir la función

tal que (sumaDivisores x) es la suma de los divisores de x. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

Número de divisores

Definir la función

tal que (numeroDivisores x) es el número de divisores de x. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

Conjunto de divisores

Definir la función

tal que (divisores x) es el conjunto de divisores de x. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

Reconocimiento de potencias de 2

Definir la función

tal que (esPotenciaDeDos n) se verifica si n es una potencia de dos (suponiendo que n es mayor que 0). Por ejemplo.

Soluciones

El código se encuentra en GitHub.

Particiones de enteros positivos

Una partición de un entero positivo n es una manera de escribir n como una suma de enteros positivos. Dos sumas que sólo difieren en el orden de sus sumandos se consideran la misma partición. Por ejemplo, 4 tiene cinco particiones: 4, 3+1, 2+2, 2+1+1 y 1+1+1+1.

Definir la función

tal que (particiones n) es la lista de las particiones del número n. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

Mínimo producto escalar

El producto escalar de los vectores [a1,a2,…,an] y [b1,b2,…, bn] es

Definir la función

tal que (menorProductoEscalar xs ys) es el mínimo de los productos escalares de las permutaciones de xs y de las permutaciones de ys. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

Puntos en regiones rectangulares

Los puntos se puede representar mediante pares de números

y las regiones rectangulares mediante el siguiente tipo de dato

donde

  • (Rectangulo p1 p2) es la región formada por un rectángulo cuyo vértice superior izquierdo es p1 y su vértice inferior derecho es p2.
  • (Union r1 r2) es la región cuyos puntos pertenecen a alguna de las regiones r1 y r2.
  • (Diferencia r1 r2) es la región cuyos puntos pertenecen a la región r1 pero no pertenecen a la r2.

Definir la función

tal que (enRegion p r) se verifica si el punto p pertenece a la región r. Por ejemplo, usando las regiones definidas por

se tiene

Comprobar con QuickCheck que si el punto p está en la región r1, entonces, para cualquier región r2, p está en (Union r1 r2) y en (Union r2 r1), pero no está en (Diferencia r2 r1).

Soluciones

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Clausura de un conjunto respecto de una función

Un conjunto A está cerrado respecto de una función f si para elemento x de A se tiene que f(x) pertenece a A. La clausura de un conjunto B respecto de una función f es el menor conjunto A que contiene a B y es cerrado respecto de f. Por ejemplo, la clausura de {0,1,2] respecto del opuesto es {-2,-1,0,1,2}.

Definir la función

tal que (clausura f xs) es la clausura de xs respecto de f. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Números con todos sus dígitos primos

Definir la lista

cuyos elementos son los números con todos sus dígitos primos. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Producto cartesiano de una familia de conjuntos

Definir la función

tal que (producto xss) es el producto cartesiano de los conjuntos xss. Por ejemplo,

Comprobar con QuickCheck que para toda lista de listas de números enteros, xss, se verifica que el número de elementos de (producto xss) es igual al producto de los números de elementos de cada una de las listas de xss.

Soluciones

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Representación de Zeckendorf

Los primeros números de Fibonacci son

tales que los dos primeros son iguales a 1 y los siguientes se obtienen sumando los dos anteriores.

El teorema de Zeckendorf establece que todo entero positivo n se puede representar, de manera única, como la suma de números de Fibonacci no consecutivos decrecientes. Dicha suma se llama la representación de Zeckendorf de n. Por ejemplo, la representación de Zeckendorf de 100 es

Hay otras formas de representar 100 como sumas de números de Fibonacci; por ejemplo,

pero no son representaciones de Zeckendorf porque 1 y 2 son números de Fibonacci consecutivos, al igual que 34 y 55.

Definir la función

tal que (zeckendorf n) es la representación de Zeckendorf de n. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Ordenada cíclicamente

Se dice que una sucesión x(1), …, x(n) está ordenada cíclicamente si existe un índice i tal que la sucesión

está ordenada crecientemente de forma estricta.

Definir la función

tal que (ordenadaCiclicamente xs) es el índice a partir del cual está ordenada, si la lista está ordenado cíclicamente y Nothing en caso contrario. Por ejemplo,

Nota: Se supone que el argumento es una lista no vacía sin elementos repetidos.

Soluciones

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Eliminación de las ocurrencias aisladas.

Definir la función

tal que (eliminaAisladas x ys) es la lista obtenida eliminando en ys las ocurrencias aisladas de x (es decir, aquellas ocurrencias de x tales que su elemento anterior y posterior son distintos de x). Por ejemplo,

Soluciones

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Emparejamiento de árboles

Los árboles se pueden representar mediante el siguiente tipo de datos

Por ejemplo, los árboles

se representan por

Definir la función

tal que (emparejaArboles f a1 a2) es el árbol obtenido aplicando la función f a los elementos de los árboles a1 y a2 que se encuentran en la misma posición. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Separación por posición

Definir la función

tal que (particion xs) es el par cuya primera componente son los elementos de xs en posiciones pares y su segunda componente son los restantes elementos. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Número de inversiones

Se dice que en una sucesión de números x(1), x(2), …, x(n) hay una inversión cuando existe un par de números x(i) > x(j), siendo i < j. Por ejemplo, en la permutación 2, 1, 4, 3 hay dos inversiones (2 antes que 1 y 4 antes que 3) y en la permutación 4, 3, 1, 2 hay cinco inversiones (4 antes 3, 4 antes 1, 4 antes 2, 3 antes 1, 3 antes 2).

Definir la función

tal que (numeroInversiones xs) es el número de inversiones de xs. Por ejemplo,

Soluciones

[schedule expon=’2022-04-21′ expat=»06:00″]

  • Las soluciones se pueden escribir en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

[/schedule]

[schedule on=’2022-04-21′ at=»06:00″]

El código se encuentra en [GitHub](https://github.com/jaalonso/Exercitium/blob/main/src/

La elaboración de las soluciones se describe en el siguiente vídeo

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

[/schedule]

Descomposiciones triangulares

Los números triangulares se forman como sigue

La sucesión de los números triangulares se obtiene sumando los números naturales. Así, los 5 primeros números triangulares son

Definir la función

tal que (descomposicionesTriangulares n) es la lista de las ternas correspondientes a las descomposiciones de n en tres sumandos formados por números triangulares. Por ejemplo,

Soluciones

[schedule expon=’2022-04-20′ expat=»06:00″]

  • Las soluciones se pueden escribir en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

[/schedule]

[schedule on=’2022-04-20′ at=»06:00″]

El código se encuentra en [GitHub](https://github.com/jaalonso/Exercitium/blob/main/src/Descomposiciones_triangulares.hs).

La elaboración de las soluciones se describe en el siguiente vídeo

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

[/schedule]

Índices de valores verdaderos

Definir la función

tal que (indicesVerdaderos xs) es la lista infinita de booleanos tal que sólo son verdaderos los elementos cuyos índices pertenecen a la lista estrictamente creciente xs. Por ejemplo,

Soluciones

[schedule expon=’2022-04-19′ expat=»06:00″]

  • Las soluciones se pueden escribir en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

[/schedule]

[schedule on=’2022-04-19′ at=»06:00″]

El código se encuentra en [GitHub](https://github.com/jaalonso/Exercitium/blob/main/src/Indices_verdaderos.hs).

La elaboración de las soluciones se describe en el siguiente vídeo

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

[/schedule]

Código de las alergias

Para la determinación de las alergia se utiliza los siguientes códigos para los alérgenos:

Así, si Juan es alérgico a los cacahuetes y al chocolate, su puntuación es 34 (es decir, 2+32).

Los alérgenos se representan mediante el siguiente tipo de dato

Definir la función

tal que (alergias n) es la lista de alergias correspondiente a una puntuación n. Por ejemplo,

Soluciones

[schedule expon=’2022-04-18′ expat=»06:00″]

  • Las soluciones se pueden escribir en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

[/schedule]

[schedule on=’2022-04-18′ at=»06:00″]

El código se encuentra en [GitHub](https://github.com/jaalonso/Exercitium/blob/main/src/Alergias.hs).

La elaboración de las soluciones se describe en el siguiente vídeo

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

[/schedule]

Reiteración de una función

Definir la función

tal que (reiteracion f n x) es el resultado de aplicar n veces la función f a x. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Elementos de una matriz con algún vecino menor

Las matrices pueden representarse mediante tablas cuyos índices son pares de números naturales. Su tipo se define por

Por ejemplo, la matriz

se define por

Los vecinos de un elemento son los que están a un paso en la misma fila, columna o diagonal. Por ejemplo, en la matriz anterior, el 1 tiene 8 vecinos (el 9, 4, 6, 8, 7, 4, 2 y 5) pero el 9 sólo tiene 3 vecinos (el 4, 8 y 1).

Definir la función

tal que (algunoMenor p) es la lista de los elementos de p que tienen algún vecino menor que él. Por ejemplo,

pues sólo el 1 y el 3 no tienen ningún vecino menor en la matriz.

Soluciones

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Enumeración de árboles binarios

Los árboles binarios se pueden representar mediante el tipo Arbol definido por

Por ejemplo, el árbol

se puede definir por

Definir la función

tal que (enumeraArbol a) es el árbol obtenido numerando las hojas y los nodos de a desde la hoja izquierda hasta la raíz. Por ejemplo,

Gráficamente,

Soluciones

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

[/schedule]

Números triangulares con n cifras distintas

Los números triangulares se forman como sigue

La sucesión de los números triangulares se obtiene sumando los números naturales. Así, los 5 primeros números triangulares son

Definir la función

tal que (triangulares n) es la lista de los números triangulares con n cifras distintas. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>