Menor número con una cantidad dada de divisores

El menor número con 2 divisores es el 2, ya que tiene 2 divisores (el 1 y el 2) y el anterior al 2 (el 1) sólo tiene 1 divisor (el 1).

El menor número con 4 divisores es el 6, ya que tiene 4 divisores (el 1, 2, 3 y 6) y sus anteriores (el 1, 2, 3, 4 y 5) tienen menos de 4 divisores (tienen 1, 1, 1, 3 y 1, respectivamente).

El menor número con 8 divisores es el 24, ya que tiene 8 divisores (el 1, 2, 3, 4, 6, 8, 12 y 24) y sus anteriores (del 1 al 23) tienen menos de 8 divisores.

El menor número con 16 divisores es el 120, ya que tiene 16 divisores (el 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60 y 120) y sus anteriores (del 1 al 119) tienen menos de 16 divisores.

Definir la función

tal que (menor n) es el menor número con 2^n divisores. Por ejemplo,

Comprobar con QuickCheck que, para todo k >=0, (menor (2^k)) es un divisor de (menor (2^(k+1))).

Nota: Este ejercicio está basado en el problema N1 de la Olimpíada Internacional de Matemáticas (IMO) del 2011.

Soluciones

El código se encuentra en GitHub.