Menu Close

Día: 2 junio, 2022

Suma de los elementos de las diagonales matrices espirales

Empezando con el número 1 y moviéndose en el sentido de las agujas del reloj se obtienen las matrices espirales

   |1 2|   |7 8 9|   | 7  8  9 10|   |21 22 23 24 25|
   |4 3|   |6 1 2|   | 6  1  2 11|   |20  7  8  9 10|
           |5 4 3|   | 5  4  3 12|   |19  6  1  2 11|
                     |16 15 14 13|   |18  5  4  3 12|
                                     |17 16 15 14 13|

La suma los elementos de sus diagonales es

   + en la 2x2: 1+3+2+4               =  10
   + en la 3x3: 1+3+5+7+9             =  25
   + en la 4x4: 1+2+3+4+7+10+13+16    =  56
   + en la 5x5: 1+3+5+7+9+13+17+21+25 = 101

Definir la función

   sumaDiagonales :: Integer -> Integer

tal que (sumaDiagonales n) es la suma de los elementos en las diagonales de la matriz espiral de orden nxn. Por ejemplo.

   sumaDiagonales 1         ==  1
   sumaDiagonales 2         ==  10
   sumaDiagonales 3         ==  25
   sumaDiagonales 4         ==  56
   sumaDiagonales 5         ==  101
   sumaDiagonales (10^6)    ==  666667166668000000
   sumaDiagonales (1+10^6)  ==  666669166671000001
 
   sumaDiagonales (10^2)  ==         671800
   sumaDiagonales (10^3)  ==        667168000
   sumaDiagonales (10^4)  ==       666716680000
   sumaDiagonales (10^5)  ==      666671666800000
   sumaDiagonales (10^6)  ==     666667166668000000
   sumaDiagonales (10^7)  ==    666666716666680000000
   sumaDiagonales (10^8)  ==   666666671666666800000000
   sumaDiagonales (10^9)  ==  666666667166666668000000000

Comprobar con QuickCheck que el último dígito de (sumaDiagonales n) es 0, 4 ó 6 si n es par y es 1, 5 ó 7 en caso contrario.