Triángulo de Pascal binario

Los triángulos binarios de Pascal se formas a partir de una lista de ceros y unos usando las reglas del triángulo de Pascal, donde cada uno de los números es suma módulo dos de los dos situados en diagonal por encima suyo. Por ejemplo, los triángulos binarios de Pascal correspondientes a [1,0,1,1,1] y [1,0,1,1,0] son

Sus finales, desde el extremo inferior al extremos superior derecho, son [0,1,0,0,1] y [1,0,1,1,0], respectivamente.

Una lista es Pascal capicúa si es igual a los finales de su triángulo binario de Pascal. Por ejemplo, [1,0,1,1,0] es Pascal capicúa.

Definir las funciones

tales que

  • (trianguloPascalBinario xs) es el triágulo binario de Pascal correspondiente a la lista xs. Por ejemplo,

  • (pascalCapicuas n) es la lista de listas de Pascal capicúas de n elementos. Por ejemplo,

  • (nPascalCapicuas n) es el número de listas de Pascal capicúas de n elementos. Por ejemplo,

Soluciones

Pensamiento

La envidia de la virtud
hizo a Caín criminal.
¡Gloria a Caín! Hoy el vicio
es lo que se envidia más.

Antonio Machado

Impares en filas del triángulo de Pascal

El triángulo de Pascal es un triángulo de números

construido de la siguiente forma

  • la primera fila está formada por el número 1;
  • las filas siguientes se construyen sumando los números adyacentes de la fila superior y añadiendo un 1 al principio y al final de la fila.

Definir las funciones

tales que

  • imparesPascal es la lista de los elementos impares en cada una de las filas del triángulo de Pascal. Por ejemplo,

  • nImparesPascal es la lista del número de elementos impares en cada una de las filas del triángulo de Pascal. Por ejemplo,

  • (grafica_nImparesPascal n) dibuja la gráfica de los n primeros términos de nImparesPascal. Por ejemplo, (grafica_nImparesPascal 50) dibuja

y (grafica_nImparesPascal 100) dibuja

Comprobar con QuickCheck que todos los elementos de nImparesPascal son potencias de dos.

Soluciones

Pensamiento

De lo que llaman los hombres
virtud, justicia y bondad,
una mitad es envidia,
y la otra no es caridad.

Antonio Machado

Árboles con n elementos

Los árboles binarios se pueden representar con

Definir las funciones

tales que

  • (arboles n x) es la lista de todos los árboles binarios con n elementos iguales a x. Por ejemplo,

  • nArboles es la sucesión de los números de árboles con k elementos iguales a 7, con k ∈ {1,3,5,…}. Por ejemplo,

Soluciones

Pensamiento

Ni vale nada el fruto
cogido sin sazón …
Ni aunque te elogie un bruto
ha de tener razón.

Antonio Machado

Números con dígitos 1 y 2

Definir las funciones

tales que

  • (numerosCon1y2 n) es la lista ordenada de números de n dígitos que se pueden formar con los dígitos 1 y 2. Por ejemplo,

  • (restosNumerosCon1y2 n) es la lista de los restos de dividir los elementos de (restosNumerosCon1y2 n) entre 2^n. Por ejemplo,

  • (graficaRestosNumerosCon1y2 n) dibuja la gráfica de los restos de dividir los elementos de (restosNumerosCon1y2 n) entre 2^n. Por ejemplo, (graficaRestosNumerosCon1y2 3) dibuja

(graficaRestosNumerosCon1y2 4) dibuja

y (graficaRestosNumerosCon1y2 5) dibuja

Nota: En la definición usar la función plotListStyle y como su segundo argumento (el PloStyle) usar

Comprobar con QuickCheck que todos los elementos de (restosNumerosCon1y2 n) son distintos.

Soluciones

Pensamiento

¿Para qué llamar caminos
a los surcos del azar? …
Todo el que camina anda,
como Jesús, sobre el mar.

Antonio Machado

Recorrido de árboles en espiral

Los árboles se pueden representar mediante el siguiente tipo de datos

Por ejemplo, los árboles

se representan por

Definir la función

tal que (espiral x) es la lista de los nodos del árbol x recorridos en espiral; es decir, la raíz de x, los nodos del primer nivel de izquierda a derecha, los nodos del segundo nivel de derecha a izquierda y así sucesivamente. Por ejemplo,

Soluciones

Pensamiento

Dice la monotonía
del agua clara al caer:
un día es como otro día;
hoy es lo mismo que ayer.

Antonio Machado

Números primos en pi

El fichero Digitos_de_pi.txt contiene el número pi con un millón de decimales; es decir,

Definir las funciones

tales que

  • (nOcurrenciasPrimosEnPi n k) es la lista de longitud n cuyo i-ésimo elemento es el número de ocurrencias del i-ésimo número primo en los k primeros decimales del número pi. Por ejemplo,

ya que los 20 primeros decimales de pi son 14159265358979323846 y en ellos ocurre el 2 dos veces, el 3 ocurre 3 veces, el 5 ocurre 3 veces y el 7 ocurre 1 vez. Otros ejemplos son

  • (graficaPrimosEnPi n k) dibuja la gráfica del número de ocurrencias de los n primeros números primos en los k primeros dígitos de pi. Por ejemplo, (graficaPrimosEnPi 10 (10^4)) dibuja

(graficaPrimosEnPi 10 (10^6)) dibuja

y (graficaPrimosEnPi 50 (10^5)) dibuja

Soluciones

Pensamiento

Al borde del sendero un día nos sentamos.
Ya nuestra vida es tiempo, y nuestra sola cuita
son las desesperantes posturas que tomamos
para aguardar … Mas ella no faltará a la cita.

Antonio Machado

Sucesión triangular

La sucesión triangular es la obtenida concatenando las listas [1], [1,2], [1,2,3], [1,2,3,4], …. Sus primeros términos son 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6, …

Definir las funciones

tales que

  • sucTriangular es la lista de los términos de la sucesión triangular. Por ejemplo,

  • (terminoSucTriangular n) es el término n-ésimo de la sucesión triangular. Por ejemplo,

  • (graficaSucTriangular n) dibuja la gráfica de los n primeros términos de la sucesión triangular. Por ejemplo, (graficaSucTriangular 300) dibuja

Soluciones

Pensamiento

Nadie debe asustarse de lo que piensa, aunque su pensar aparezca en pugna con las leyes más elementales de la lógica. Porque todo ha de ser pensado por alguien, y el mayor desatino puede ser un punto de vista de lo real.

Antonio Machado

Soluciones de x² = y³ = k

Definir la función

tal que sus elementos son las ternas (x,y,k) de soluciones del sistema x² = y³ = k. Por ejemplo,

Soluciones

Pensamiento

Leyendo a Cervantes me parece comprenderlo todo.

Antonio Machado

Intersección de listas infinitas crecientes

Definir la función

tal que (interseccion xss) es la intersección de la lista no vacía de listas infinitas crecientes xss; es decir, la lista de los elementos que pertenecen a todas las listas de xss. Por ejemplo,

Soluciones

Pensamiento

Alguna vez he pensado
si el alma será la ausencia,
mientras más cerca más lejos;
mientras más lejos más cerca.

Antonio Machado

Mínimo número de operaciones para transformar un número en otro

Se considera el siguiente par de operaciones sobre los números:

  • multiplicar por dos
  • restar uno.

Dados dos números x e y se desea calcular el menor número de operaciones para transformar x en y. Por ejemplo, el menor número de operaciones para transformar el 4 en 7 es 2:

y el menor número de operaciones para transformar 2 en 5 es 4

Definir las siguientes funciones

tales que

  • (arbolOp x n) es el árbol de profundidad n obtenido aplicándole a x las dos operaciones. Por ejemplo,

  • (minNOp x y) es el menor número de operaciones necesarias para transformar x en y. Por ejemplo,

Soluciones

Pensamiento

¿Dijiste media verdad?
Dirán que mientes dos veces
si dices la otra mitad.

Antonio Machado

Posiciones del 2019 en el número pi

El fichero Digitos_de_pi.txt contiene el número pi con un millón de decimales; es decir,

Definir la función

tal que (posicion cs k) es es la lista de las posiciones iniciales de cs en la sucesión formada por los k primeros dígitos decimales del número pi. Por ejemplo,

Calcular la primera posición de 2019 en los decimales de pi y el número de veces que aparece 2019 en en el primer millón de decimales de pi.

Soluciones

Pensamiento

Aprendió tantas cosas, que no tuvo tiempo para pensar en ninguna de ellas.

Antonio Machado

Números altamente compuestos

Un número altamente compuesto es un entero positivo con más divisores que cualquier entero positivo más pequeño. Por ejemplo,

  • 4 es un número altamente compuesto porque es el menor con 3 divisores,
  • 5 no es altamente compuesto porque tiene menos divisores que 4 y
  • 6 es un número altamente compuesto porque es el menor con 4 divisores,

Los primeros números altamente compuestos son

Definir las funciones

tales que

  • (esAltamanteCompuesto x) se verifica si x es altamente compuesto. Por ejemplo,

  • altamente compuestos es la sucesión de los números altamente compuestos. Por ejemplo,

  • (graficaAltamenteCompuestos n) dibuja la gráfica de los n primeros números altamente compuestos. Por ejemplo, (graficaAltamenteCompuestos 25) dibuja

Soluciones

Pensamiento

Nuestras horas son minutos
cuando esperamos saber,
y siglos cuando sabemos
lo que se puede aprender.

Antonio Machado

Representación de conjuntos mediante intervalos

Un conjunto de números enteros se pueden representar mediante una lista ordenada de intervalos tales que la diferencia entre el menor elemento de un intervalo y el mayor elemento de su intervalo anterior es mayor que uno.

Por ejemplo, el conjunto {2, 7, 4, 3, 9, 6} se puede representar mediante la lista de intervalos [(2,4),(6,7),(9,9)] de forma que en el primer intervalo se agrupan los números 2, 3 y 4; en el segundo, los números 6 y 7 y el tercero, el número 9.

Definir la función

tal que (intervalos xs) es lista ordenada de intervalos que representa
al conjunto xs. Por ejemplo,

Soluciones

Pensamiento

Cuando el saber se especializa, crece el volumen total de la cultura. Esta es la ilusión y el consuelo de los especialistas. ¡Lo que sabemos entre todos! ¡Oh, eso es lo que no sabe nadie!

Antonio Machado

Ofertas 3 por 2

En una tienda tiene la «oferta 3 por 2» de forma que cada cliente que elige 3 artículos obtiene el más barato de forma gratuita. Por ejemplo, si los precios de los artículos elegidos por un cliente son 10, 2, 4, 5 euros pagará 19 euros si agrupa los artículos en (10,2,4) y (5) o pagará 17 si lo agupa en (5,10,4) y (2).

Definir la función

tal que (minimoConOferta xs) es lo mínimo que pagará el cliente si los precios de la compra son xs; es decir, lo que pagará agrupando los artículos de forma óptima para aplicar la oferta 3 por 2. Por ejemplo,

Soluciones

Pensamiento

Despacito y buena letra:
el hacer las cosas bien
importa más que el hacerlas.

Antonio Machado

Mayor prefijo con suma acotada

Definir la función

tal que (mayorPrefijoAcotado xs y) es el mayor prefijo de la lista de los números enteros positivos xs cuya suma es menor o igual que y. Por ejemplo,

Soluciones

Pensamiento

Sed hombres de mal gusto. Yo os aconsejo el mal gusto para combatir los excesos de la moda.

Antonio Machado

Subárboles monovalorados

Los árboles binarios con valores enteros se pueden representar mediante el tipo Arbol definido por

Por ejemplo, el árbol

se puede representar por

Un árbol es monovalorado si todos sus elementos son iguales. Por ejemplo, de los siguientes árboles sólo son monovalorados los dos primeros

Definir la función

tal que (monovalorados a) es la lista de los subárboles monovalorados de a. Por ejemplo,

Soluciones

Pensamiento

Y nadie pregunta
ni nadie contesta,
todos hablan solos.

Antonio Machado

Cadena descendiente de subnúmeros

Una particularidad del 2019 es que se puede escribir como una cadena de dos subnúmeros consecutivos (el 20 y el 19).

Definir la función

tal que (cadena n) es la cadena de subnúmeros consecutivos de n cuya unión es n; es decir, es la lista de números [x,x-1,…x-k] tal que su concatenación es n. Por ejemplo,

Nota: Los subnúmeros no pueden empezar por cero. Por ejemplo, [10,09] no es una cadena de 1009 como se observa en el tercer ejemplo.

Soluciones

Pensamiento

La inseguridad, la incertidumbre, la desconfianza, son acaso nuestras únicas verdades. Hay que aferrarse a ellas.

Antonio Machado

El 2019 es un número de la suerte

Un número de la suerte es un número natural que se genera por una criba, similar a la criba de Eratóstenes, como se indica a continuación:

Se comienza con la lista de los números enteros a partir de 1:

Se eliminan los números de dos en dos

Como el segundo número que ha quedado es 3, se eliminan los números restantes de tres en tres:

Como el tercer número que ha quedado es 7, se eliminan los números restantes de siete en siete:

Este procedimiento se repite indefinidamente y los supervivientes son los números de la suerte:

Definir las funciones

tales que

  • numerosDeLaSuerte es la sucesión de los números de la suerte. Por ejemplo,

  • (esNumeroDeLaSuerte n) que se verifica si n es un número de la suerte. Por ejemplo,

Soluciones

Pensamiento

Ya es sólo brocal el pozo;
púlpito será mañana;
pasado mañana, trono.

Antonio Machado

El 2019 es semiprimo

Un número semiprimo es un número natural que es producto de dos números primos no necesariamente distintos. Por ejemplo, 26 es semiprimo (porque 26 = 2×13) y 49 también lo es (porque 49 = 7×7).

Definir las funciones

tales que

  • (esSemiprimo n) se verifica si n es semiprimo. Por ejemplo,

  • semiprimos es la sucesión de números semiprimos. Por ejemplo,

Soluciones

Pensamiento

Porque toda visión requiere distancia, no hay manera de ver las cosas sin salirse de ellas.

Antonio Machado

El 2019 es malvado

Un número malvado es un número natural cuya expresión en base 2 contiene un número par de unos. Por ejemplo, 6 es malvado porque su expresión en base 2 es 110 que tiene dos unos.

Definir las funciones

tales que

  • (esMalvado n) se verifica si n es un número malvado. Por ejemplo,

  • malvados es la sucesión de los números malvados. Por ejemplo,

  • (posicionMalvada n) es justo la posición de n en la sucesión de números malvados, si n es malvado o Nothing, en caso contrario. Por ejemplo,

Soluciones

Pensamiento

… Yo os enseño, o pretendo enseñaros a que dudéis de todo: de lo
humano y de lo divino, sin excluir vuestra propia existencia.

Antonio Machado

El 2019 es apocalíptico

Un número natural n es apocalíptico si 2^n contiene la secuencia 666. Por ejemplo, 157 es apocalíptico porque 2^157 es 182687704666362864775460604089535377456991567872 que contiene la secuencia 666.

Definir las funciones

tales que

  • (esApocaliptico n) se verifica si n es un número apocalíptico. Por ejemplo,

  • apocalipticos es la lista de los números apocalípticos. Por ejemplo,

  • (posicionApocalitica n) es justo la posición de n en la sucesión de números apocalípticos, si n es apocalíptico o Nothing, en caso contrario. Por ejemplo,

Soluciones

Pensamiento

A vosotros no os importe pensar lo que habéis leído ochenta veces y oído
quinientas, porque no es lo mismo pensar que haber leído.

Antonio Machado