Rotaciones de un número

Definir la función

(rotacionesNumero n) es la lista de las rotaciones obtenidas desplazando el primer dígito de n al final. Por ejemplo,

Soluciones

Agrupamiento según valores

Definir la función

tal que (agrupa f xs) es el diccionario obtenido agrupando los elementos de xs según sus valores mediante la función f. Por ejemplo,

Soluciones

Colinealidad de una lista de puntos

Una colección de puntos son colineales si existe una línea recta tal que todos están en dicha línea. Por ejemplo, los puntos (2,1), (5,7), (4,5) y (20,37) son colineales porque pertenecen a la línea y = 2*x-3.

Definir la función

tal que (colineales ps) se verifica si los puntos de la lista ps son colineales. Por ejemplo,

Soluciones

Distancia invierte y suma hasta capicúa

Un número es capicúa si es igual leído de izquierda a derecha que de derecha a izquierda; por ejemplo, el 4884.

El transformado «invierte y suma» de un número x es la suma de x y su número invertido; es decir, el número resultante de la inversión del orden en el que aparecen sus dígitos. Por ejemplo, el transformado de 124 es 124 + 421 = 545.

Se aplica la transformación «invierte y suma» hasta obtener un capicúa. Por ejemplo, partiendo del número 87, el proceso es

El número de pasos de dicho proceso es la distancia capicúa del número; por ejemplo, la distancia capicúa de 87 es 4.

Definir la función

tal que (distanciaIS x) es la distancia capicúa de x. Por ejemplo,

Soluciones

Fracciones cancelativas

Una fracción x/y es cancelativa si se cumplen las siguientes condiciones:

  • x/y es propia (es decir, x < y),
  • ninguno de los números x e y son múltiplos de 10 y
  • existe un dígito d tal que al borrar una ocurrencia de d en x y otra en y se obtiene una fracción cuyo valor coincide con x/y.

Por ejemplo, 16/64 es cancelativa ya que borrando el 6 en el numerador y el denominador se obtiene 1/4 que es igual a la original: 16/64 = 1/4.

Definir la función

tal que (cancelativas m n) es la lista de las fracciones cancelativas con su denominador entre m y n. Por ejemplo,

Soluciones

Caminos reducidos

Un camino es una sucesión de pasos en una de las cuatros direcciones Norte, Sur, Este, Oeste. Ir en una dirección y a continuación en la opuesta es un esfuerzo que se puede reducir, Por ejemplo, el camino [Norte,Sur,Este,Sur] se puede reducir a [Este,Sur].

Un camino se dice que es reducido si no tiene dos pasos consecutivos en direcciones opuesta. Por ejemplo, [Este,Sur] es reducido y [Norte,Sur,Este,Sur] no lo es.

En Haskell, las direcciones y los caminos se pueden definir por

Definir la función

tal que (reducido ds) es el camino reducido equivalente al camino ds. Por ejemplo,

Nótese que en el penúltimo ejemplo las reducciones son

Soluciones

Con mínimo común denominador

Los números racionales se pueden representar como pares de enteros:

Definir la función

tal que (reducida xs) es la lista de los números racionales donde cada uno es igual al correspondiente elemento de xs y el denominador de todos los elementos de (reducida xs) es el menor número que cumple dicha condición; es decir, si xs es la lista

entonces (reducida xs) es

tales que

y d es el menor posible. Por ejemplo,

Soluciones

Primos hereditarios

Un número primo es hereditario si todos los números obtenidos eliminando dígitos por la derecha o por la izquierda son primos. Por ejemplo, 3797 es hereditario ya que los números obtenidos eliminando dígitos por la derecha son 3797, 379, 37 y 3 y los obtenidos eliminando dígitos por la izquierda son 3797, 797, 97 y 7 y todos ellos son primos.

Definir la sucesión

cuyos elementos son los números hereditarios. Por ejemplo,

Soluciones

Constante de Champernowne

La constante de Champernowne es el número irracional

cuya parte entera es 0 y la parte decimal se obtiene concatenado los números naturales a partir de 1.

Definir la función

tal que (productoChampernowne ns) es el producto de los dígitos de la constante de Champernowne que ocupan las posiciones ns. Por ejemplo,

Soluciones

Casas con números equilibrados

Continuando con los problema propuestos por alumnos, el de hoy es el propuesto por Rafael Jiménez.

Se tiene una calle en la que las casas sólo están en un lado de ésta y las casas están numeradas de 1 hasta n, donde n es el número total de casas en la calle. Se dice que el número de una casa es equilibrado si y solamente si la suma de los números de las casas anteriores es igual a la suma de los números posteriores a la casa. Por ejemplo, el número de la 6ª casa, en una calle con 8 casas, es equilibrado ya que

Definir la función

tal que (soluciones x y) es la lista de pares (a,n) tales que a es el número equilibrado de una casa en una calle con n casas y n está entre x e y. Por ejemplo,

Soluciones

Las torres de Hanói

En la clase de la semana pasada comenté la posibilidad de que los alumnos me enviaran propuestas de ejercicios para publicarlos en Exercitium. La primera que he recibido es la de Javier Linares sobre el problema de las torres de Hanoi que constituye el ejercicio de hoy.

Las torres de Hanoi es un rompecabeza que consta de tres postes que llamaremos A, B y C. Hay N discos de distintos tamaños en el poste A, de forma que no hay un disco situado sobre otro de menor tamaño. Los postes B y C están vacíos. Sólo puede moverse un disco a la vez y todos los discos deben de estar ensartados en algún poste. Ningún disco puede situarse sobre otro de menor tamaño. El problema consiste en colocar los N discos en el poste C.

Definir la función

tal que (hanoi n) es la lista de los movimientos para resolver el problema de las torres de hanoi con n discos. Por ejemplo,

Soluciones

Pandigitales múltiplos de un número por una lista de números

Un número pandigital es un número que contiene todos los dígitos del 1 al 9 sólo una vez. Por ejemplo, 192384576 es un número pandigital.

El producto de un número natural x por una lista de números naturales ys es el número obtenido concatenando los productos de x por cada uno de los elementos de ys. Por ejemplo, el producto de 2 por [3,2,5] es 6410.

Un número pandigital x es un múltiplo si existe un y y un n > 1 tales que x es el producto de y por [1,2,3,…,n]. Por ejemplo, 192384576 es un pandigital múltiplo ya que

por tanto, 192384576 es el producto de 192 por [1,2,3]. Otro pandgital múltiplo es el 918273645 ya que es el producto de 9 por [1,2,3,4,5].

Definir la sucesión

tal que sus elementos son los números pandigitales múltiplos. Por ejemplo,

Soluciones

Producto de un número por una lista de números

El producto de un número natural x por una lista de números naturales ys es el número obtenido concatenando los productos de x por cada uno de los elementos de ys. Por ejemplo, el producto de 2 por [3,2,5] es 26410.

Definir la función

tal que (producto x ys) es el producto de x por ys. Por ejemplo,

Soluciones

Perímetro más frecuente de triángulos rectángulos

El grado perimetral de un número p es la cantidad de tres triángulos rectángulos de lados enteros cuyo perímetro es p. Por ejemplo, el grado perimetral de 120 es 3 ya que sólo hay 3 triángulos rectángulos de lados enteros cuyo perímetro es 120: {20,48,52}, {24,45,51} y {30,40,50}.

Definir la función

tal que (maxGradoPerimetral n) es el par (m,ps) tal que m es el máximo grado perimetral de los números menores o iguales que n y ps son los perímetros, menores o iguales que n, cuyo grado perimetral es m. Por ejemplo,

Soluciones

Polinomios pares

Un polinomio de coeficientes enteros se dirá par si todos sus coeficientes son números pares. Por ejemplo, el polinomio 2x³ – 4x² + 8 es par y el x² + 2x + 10 no lo es.

Definir el predicado

tal que (parPol p) se verifica si p es un polinomio par. Por ejemplo,

Comprobar con QuickCheck que la suma de un polinomio con él mismo es un polinomio par.

Nota: Este ejercicio debe realizarse usando la librería I1M.Pol que se encuentra aquí y se describe aquí.

Soluciones

Ampliación de una matriz sumando sus filas

Representamos las matrices mediante el tipo de dato

Por ejemplo,

representa la matriz

Definir la función

tal que (ampliada p) es la matriz obtenida al añadir una nueva fila a p cuyo elemento i-ésimo es la suma de la columna i-ésima de p. Por ejemplo,

En Haskell,

Soluciones

Ramas a las que pertenece un elemento

Representamos los árboles binarios con elementos en las hojas y en los nodos mediante el tipo de dato

Por ejemplo,

Definir la función

tal que (ramasCon a x) es la lista de las ramas del árbol a en las que aparece el elemento x. Por ejemplo,

Soluciones