La composición de una función creciente y una decreciente es decreciente

Sea una función \(f\) de \(ℝ\) en \(ℝ\). Se dice que \(f\) es creciente si para todo \(x\) e \(y\) tales que \(x ≤ y\) se tiene que \(f(x) ≤ f(y)\). Se dice que \(f\) es decreciente si para todo \(x\) e \(y\) tales que \(x ≤ y\) se tiene que \(f(x) ≥ f(y)\).

Demostrar con Lean4 que si \(f\) es creciente y \(g\) es decreciente, entonces \(g ∘ f\) es decreciente.

Para ello, completar la siguiente teoría de Lean4:

Read More «La composición de una función creciente y una decreciente es decreciente»