Números cuyos factoriales son divisibles por x pero no por y

Hay 3 números (el 2, 3 y 4) cuyos factoriales son divisibles por 2 pero no por 5. Análogamente, hay números 5 (el 5, 6, 7, 8, 9) cuyos factoriales son divisibles por 15 pero no por 25.

Definir la función

tal que (nNumerosConFactorialesDivisibles x y) es la cantidad de números cuyo factorial es divisible por x pero no por y. Por ejemplo,

Soluciones

La función de Smarandache

La función de Smarandache, también conocida como la función de Kempner, es la función que asigna a cada número entero positivo n el menor número cuyo factorial es divisible por n y se representa por S(n). Por ejemplo, el número 8 no divide a 1!, 2!, 3!, pero sí divide 4!; por tanto, S(8) = 4.

Definir las funciones

tales que

  • (smarandache n) es el menor número cuyo factorial es divisible por n. Por ejemplo,

  • (graficaSmarandache n) dibuja la gráfica de los n primeros términos de la sucesión de Smarandache. Por ejemplo, (graficaSmarandache 100) dibuja
    La_funcion_de_Smarandache_100
    (graficaSmarandache 500) dibuja
    La_funcion_de_Smarandache_500

Soluciones

Menor potencia de 2 que comienza por n

Definir las funciones

tales que

  • (menorPotencia n) es el par (k,m) donde m es la menor potencia de 2 que empieza por n y k es su exponentes (es decir, 2^k = m). Por ejemplo,

  • (graficaMenoresExponentes n) dibuja la gráfica de los exponentes de 2 en las menores potencias de los n primeros números enteros positivos. Por ejemplo, (graficaMenoresExponentes 200) dibuja
    Menor_potencia_de_2_que_comienza_por_n

Soluciones

Recorrido de árboles en espiral

Los árboles se pueden representar mediante el siguiente tipo de datos

Por ejemplo, los árboles

se representan por

Definir la función

tal que (espiral x) es la lista de los nodos del árbol x recorridos en espiral; es decir, la raíz de x, los nodos del primer nivel de izquierda a derecha, los nodos del segundo nivel de derecha a izquierda y así sucesivamente. Por ejemplo,

Soluciones

Sucesión de Lichtenberg

La sucesión de Lichtenberg esta formada por la representación decimal de los números binarios de la sucesión de dígitos 0 y 1 alternados Los primeros términos de ambas sucesiones son

Definir las funciones

tales que

  • lichtenberg es la lista cuyos elementos son los términos de la sucesión de Lichtenberg. Por ejemplo,

  • (graficaLichtenberg n) dibuja la gráfica del número de dígitos de los n primeros términos de la sucesión de Lichtenberg. Por ejemlo, (graficaLichtenberg 100) dibuja
    Sucesion_de_Lichtenberg

Comprobar con QuickCheck que todos los términos de la sucesión de Lichtenberg, a partir del 4º, son números compuestos.

Soluciones

Posiciones de las mayúsculas

Definir la función

tal que (posicionesMayusculas cs) es la lista de las posiciones de las mayúsculas de la cadena cs. Por ejemplo,

Soluciones

Vecino en lista circular

En la lista circular [3,2,5,7,9]

  • el vecino izquierdo de 5 es 2 y su vecino derecho es 7,
  • el vecino izquierdo de 9 es 7 y su vecino derecho es 3,
  • el vecino izquierdo de 3 es 9 y su vecino derecho es 2,
  • el elemento 4 no tiene vecinos (porque no está en la lista).

Para indicar las direcciones se define el tipo de datos

Definir la función

tal que (vecino d xs x) es el vecino de x en la lista de elementos distintos xs según la dirección d. Por ejemplo,

Soluciones

Aplicación de lista de funciones a lista de elementos

Definir la función

tal que (aplicaLista fs xs) es la lista de los valores de las funciones de fs
aplicadas a los correspondientes elementos de xs. Por ejemplo,

Soluciones

Mayúsculas y minúsculas alternadas

Definir la función

tal que (alternadas cs) es el par de cadenas (xs,ys) donde xs es la cadena obtenida escribiendo alternativamente en mayúscula o minúscula las letras de la palabra cs (que se supone que es una cadena de letras minúsculas) e ys se obtiene análogamente pero empezando en minúscula. Por ejemplo,

Soluciones

Números libres de cuadrados

Un número entero positivo es libre de cuadrados si no es divisible el cuadrado de ningún entero mayor que 1. Por ejemplo, 70 es libre de cuadrado porque sólo es divisible por 1, 2, 5, 7 y 70; en cambio, 40 no es libre de cuadrados porque es divisible por 2^2.

Definir la función

tal que (libreDeCuadrados x) se verifica si x es libre de cuadrados. Por ejemplo,

Otro ejemplo,

Soluciones

Recorrido en ZigZag

El recorrido en ZigZag de una matriz consiste en pasar de la primera fila hasta la última, de izquierda a derecha en las filas impares y de derecha a izquierda en las filas pares, como se indica en la figura.

Definir la función

tal que (recorridoZigZag m) es la lista con los elementos de la matriz m cuando se recorre esta en ZigZag. Por ejemplo,

Soluciones

Subnúmeros pares

Los subnúmeros de un número x son los números que se pueden formar con dígitos de x en posiciones consecutivas. Por ejemplo, el número 254 tiene 6 subnúmeros: 2, 5, 4, 25, 54 y 254.

Definir las funciones

tales que

  • (subnumerosPares x) es la lista de los subnúmeros pares de x. Por ejemplo,

  • (nSubnumerosPares x) es la cantidad de subnúmeros pares de x. Por ejemplo,

Soluciones

El problema de las N torres

El problema de las N torres consiste en colocar N torres en un tablero con N filas y N columnas de forma que no haya dos torres en la misma fila ni en la misma columna.

Cada solución del problema de puede representar mediante una matriz con ceros y unos donde los unos representan las posiciones ocupadas por las torres y los ceros las posiciones libres. Por ejemplo,

representa una solución del problema de las 3 torres.

Definir las funciones

tales que
+ (torres n) es la lista de las soluciones del problema de las n torres. Por ejemplo,

  • (nTorres n) es el número de soluciones del problema de las n torres. Por ejemplo,

Soluciones

Distancias entre primos consecutivos

Los 15 primeros números primos son

Las distancias entre los elementos consecutivos son

La distribución de las distancias es

(es decir, el 1 aparece una vez, el 2 aparece 6 veces, etc.) La frecuencia de las distancias es

(es decir, el 1 aparece el 7.142857%, el 2 el 42.857143% etc.)

Definir las funciones

tales que

  • (cuentaDistancias n) es la distribución de distancias entre los n primeros primos consecutivos. Por ejemplo,

  • (frecuenciasDistancias n) es la frecuencia de distancias entre los n primeros primos consecutivos. Por ejemplo,

  • (graficas ns) dibuja las gráficas de (frecuenciasDistancias k) para k en ns. Por ejemplo, (graficas [10,20,30]) dibuja
    Distancias_entre_primos_consecutivos1
    (graficas [1000,2000,3000]) dibuja
    Distancias_entre_primos_consecutivos2
    y (graficas [100000,200000,300000]) dibuja
    Distancias_entre_primos_consecutivos3
  • (distanciasMasFrecuentes n) es la lista de las distancias más frecuentes entre los elementos consecutivos de la lista de los n primeros primos. Por ejemplo,

Comprobar con QuickCheck si para todo n > 160 se verifica que (distanciasMasFrecuentes n) es [6].

Soluciones

Rotaciones divisibles por 4

Las rotaciones de 928160 son 928160, 281609, 816092, 160928, 609281 y 92816. De las cuales, las divisibles por 4 son 928160, 816092, 160928 y 92816.

Definir la función

tal que (nRotacionesDivisibles n) es el número de rotaciones del número n divisibles por 4. Por ejemplo,

Soluciones

Números cubifinitos

El enunciado del problema Números cubifinitos de ¡Acepta el reto! es el siguiente

Se dice que un número es cubifinito cuando al elevar todos sus dígitos al cubo y sumarlos el resultado o bien es 1 o bien es un número cubifinito.

Por ejemplo, el número 1243 es cubifinito, pues al elevar todos sus dígitos al cubo obtenemos 100 que es cubifinito.

Por su parte, el 513 no es cubifinito, pues al elevar al cubo sus dígitos conseguimos el 153 que nunca podrá ser cubifinito, pues la suma de los cubos de sus dígitos vuelve a dar 153.

Definir las funciones

tales que

  • (esCubifinito n) se verifica si n es un número cubifinito. Por ejemplo,

  • (grafica n) dibuja la gráfica de la sucesión de los primeros n números cubifinitos. Por ejemplo, al evaluar (grafica 50) se dibuja
    Numeros_cubifinitos

Soluciones

Distribución de diferencias de dígitos consecutivos de pi

La distribución de las diferencias de los dígitos consecutivos para los 18 primeros dígitos de pi se calcula como sigue: los primeros 18 dígitos de pi son

Las diferencias de sus elementos consecutivos es

y la distribución de sus frecuencias en el intervalo [-9,9] es

es decir, el desde el -9 a -5 no aparecen, el -4 aparece 3 veces, el -2 aparece 2 veces y así sucesivamente.

Definir las funciones

tales que

  • (distribucionDDCpi n) es la distribución de las diferencias de los dígitos consecutivos para los primeros n dígitos de pi. Por ejemplo,

  • (graficas ns f) dibuja en el fichero f las gráficas de las distribuciones de las diferencias de los dígitos consecutivos para los primeros n dígitos de pi, para n en ns. Por ejemplo, al evaluar (graficas [100,250..4000] «distribucionDDCpi.png» se escribe en el fichero «distribucionDDCpi.png» la siguiente gráfica
    Distribucion_de_diferencias_de_digitos_consecutivos_de_pi

Nota: Se puede usar la librería Data.Number.CReal.

Soluciones

Precisión de aproximaciones de pi

La precisión de una aproximación x de pi es el número de dígitos comunes entre el inicio de x y de pi. Por ejemplo, puesto que 355/113 es 3.1415929203539825 y pi es 3.141592653589793, la precisión de 355/113 es 7.

Definir las siguientes funciones

tales que

  • (mayorPrefijoComun xs ys) es el mayor prefijo común de xs e ys. Por ejemplo,

  • (precisionPi x) es la precisión de la aproximación de pi x. Por ejemplo,

  • (precisionPiCR x) es la precisión de la aproximación de pi x, como números reales. Por ejemplo,

Nota: Para la definición precisionPiCR se usa la librería Data.Number.CReal que se instala con

Soluciones

Cálculo de pi mediante la fracción continua de Lange

En 1999, L.J. Lange publicó el artículo An elegant new continued fraction for π.

En el primer teorema del artículo se demuestra la siguiente expresión de π mediante una fracción continua
Calculo_de_pi_mediante_la_fraccion_continua_de_Lange

La primeras aproximaciones son

Definir las funciones

tales que

  • (aproximacionPi n) es la n-ésima aproximación de pi con la fracción continua de Lange. Por ejemplo,

  • (grafica xs) dibuja la gráfica de las k-ésimas aproximaciones de pi donde k toma los valores de la lista xs. Por ejemplo, (grafica [1..10]) dibuja
    Calculo_de_pi_mediante_la_fraccion_continua_de_Lange_2
    (grafica [10..100]) dibuja
    Calculo_de_pi_mediante_la_fraccion_continua_de_Lange_3
    y (grafica [100..200]) dibuja
    Calculo_de_pi_mediante_la_fraccion_continua_de_Lange_4

Nota: Este ejercicio ha sido propuesto por Antonio Morales.

Soluciones

Prefijo con suma acotada

Definir la función

tal que (prefijoAcotado x ys) es el mayor prefijo de ys cuya suma es menor que x. Por ejemplo,

Soluciones

Árboles continuos

Los árboles binarios se pueden representar con el de tipo de dato algebraico

Por ejemplo, los árboles

se representan por

Un árbol binario es continuo si el valor absoluto de la diferencia de los elementos adyacentes es 1. Por ejemplo, el árbol ej1 es continuo ya que el valor absoluto de sus pares de elementos adyacentes son

En cambio, el ej2 no lo es ya que |8-10| ≠ 1.

Definir la función

tal que (esContinuo x) se verifica si el árbol x es continuo. Por ejemplo,

Soluciones

Referencias

Inversa del factorial

Definir la función

tal que (inversaFactorial x) es (Just n) si el factorial de n es x y es Nothing si no existe ningún número n tal que el factorial de n es x. Por ejemplo,

Soluciones

Selección por posición

Definir la función

tal que (seleccion xs ps) es la lista ordenada de los elementos que ocupan las posiciones indicadas en la lista ps. Por ejemplo,

Soluciones

Números de la suerte

Un número de la suerte es un número natural que se genera por una criba, similar a la criba de Eratóstenes, como se indica a continuación:

Se comienza con la lista de los números enteros a partir de 1:

Se eliminan los números de dos en dos

Como el segundo número que ha quedado es 3, se eliminan los números
restantes de tres en tres:

Como el tercer número que ha quedado es 7, se eliminan los números restantes de
siete en siete:

Este procedimiento se repite indefinidamente y los supervivientes son
los números de la suerte:

Definir la sucesión

cuyos elementos son los números de la suerte. Por ejemplo,

Soluciones

Caracteres en la misma posición que en el alfabeto

Un carácter c de una cadena cs está bien colocado si la posición de c en cs es la misma que en el abecedario (sin distinguir entre mayúsculas y minúsculas). Por ejemplo, los elementos bien colocados de la cadena «aBaCEria» son ‘a’, ‘B’ y ‘E’.

Definir la función

tal que (nBienColocados cs) es el número de elementos bien colocados de la cadena cs. Por ejemplo,

Soluciones

Referencias

Basado en el problema Count characters at same position as in English alphabets de Sahil Chhabra en GeeksforGeeks.

Listas engarzadas

Una lista de listas es engarzada si el último elemento de cada lista coincide con el primero de la siguiente.

Definir la función

tal que (engarzada xss) se verifica si xss es una lista engarzada. Por ejemplo,

Soluciones

Sumas de posiciones pares e impares

Definir la función

tal que (sumasParesImpares) xs es el par formado por la suma de los elementos de xs en posiciones pares y por la suma de los elementos de xs en posiciones impares. Por ejemplo,

Soluciones

Números consecutivos compuestos

Una serie compuesta de longitud n es una lista de n números consecutivos que son todos compuestos. Por ejemplo, [8,9,10] y [24,25,26] son dos series compuestas de longitud 3.

Cada serie compuesta se puede representar por el par formado por su primer y último elemento. Por ejemplo, las dos series anteriores se pueden representar pos (8,10) y (24,26) respectivamente.

Definir la función

tal que (menorSerieCompuesta n) es la menor serie compuesta (es decir, la que tiene menores elementos) de longitud 3. Por ejemplo,

Comprobar con QuickCheck que para n > 1, el primer elemento de (menorSerieCompuesta n) es igual al primero de (menorSerieCompuesta (n-1)) o al primero de (menorSerieCompuesta (n+1)).

Soluciones

Referencias

Conmutaciones ondulantes

Una lista binaria es ondulante si sus elementos son alternativamente 0 y 1. Por ejemplo, las listas [0,1,0,1,0] y [1,0,1,0] son ondulantes.

Definir la función

tal que (minConmutacionesOndulante xs) es el mínimo número de conmutaciones (es decir, cambios de 0 a 1 o de 1 a 0) necesarias para transformar xs en una lista ondulante. Por ejemplo,

En el primer ejemplo basta conmutar el elemento en la posición 1 para obtener [1,0,1] y el segundo ejemplo los elementos en las posiciones 1 y 8 para obtener [0,1,0,1,0,1,0,1,0,1].

Soluciones

Densidad de números no monótonos

Un número entero positivo se dice que es

  • creciente si cada uno de sus dígitos es menor o igual que el que está a su derecha; por ejemplo, 134479.
  • decreciente si cada uno de sus dígitos es menor o igual que el que está a su derecha; por ejemplo, 664210.
  • no monótono si no es creciente ni decreciente; por ejemplo, 155369.

Para cada entero positivo n, la densidad números no monótonos hasta n es el cociente entre la cantidad de n números no monótonos entre menores o iguales que n y el número n. Por ejemplo, hasta 150 hay 19 números no monótonos (101, 102, 103, 104, 105, 106, 107, 108, 109, 120, 121, 130, 131, 132, 140, 141, 142, 143 y 150); por tanto, la densidad hasta 150 es 19/150 = 0.12666667

Definir las siguientes funciones

tales que

  • (densidad n) es la densidad de números no monótonos hasta n. Por ejemplo,

  • (menorConDensidadMayor x) es el menor número n tal que la densidad de números no monótonos hasta n es mayor o igual que x. Por ejemplo,

Soluciones