Conjetura de Rassias

El artículo de esta semana del blog Números y hoja de cálculo está dedicado a la Conjetura de Rassias. Dicha conjetura afirma que

Para cada número primo p > 2 existen dos primos a y b, con a < b, tales que
(p-1)a = b+1

Dado un primo p > 2, los pares de Rassia de p son los pares de primos (a,b), con a < b, tales que (p-1)a = b+1. Por ejemplo, (2,7) y (3,11) son pares de Rassia de 5 ya que

  • 2 y 7 son primos, 2 < 7 y (5-1)·2 = 7+1
  • 3 y 11 son primos, 3 < 11 y (5-1)·3 = 11+1

Definir las siguientes funciones

tales que

  • (paresRassias p) es la lista de los pares de Rassias del primo p (que se supone que es mayor que 2). Por ejemplo,

  • (conjeturaRassia x) se verifica si para todos los primos menores que x (y mayores que 2) se cumple la conjetura de Rassia. Por ejemplo,

Soluciones

Referencias

Primo anterior

Definir la función

tal que (primoAnterior n) es el mayor primo menor que n (donde n > 2). Por ejemplo,

Calcular el menor número cuya distancia a su primo anterior es mayor que 40.

Soluciones

Sucesión duplicadora

Para cada entero positivo n, existe una única sucesión que empieza en 1, termina en n y en la que cada uno de sus elementos es el doble de su anterior o el doble más uno. Dicha sucesión se llama la sucesión duplicadora de n. Por ejemplo, la sucesión duplicadora de 13 es [1, 3, 6, 13], ya que

Definir la función

tal que (duplicadora n) es la sucesión duplicadora de n. Por ejemplo,

Soluciones

Conjuntos de primos emparejables

Un conjunto de primos emparejables es un conjunto S de números primos tales que al concatenar cualquier par de elementos de S se obtiene un número primo. Por ejemplo, {3, 7, 109, 673} es un conjunto de primos emparejables ya que sus elementos son primos y las concatenaciones de sus parejas son 37, 3109, 3673, 73, 7109, 7673, 1093, 1097, 109673, 6733, 6737 y 673109 son primos.

Definir la función

tal que (emparejables n m) es el conjunto de los conjuntos emparejables de n elementos menores que n. Por ejemplo,

Soluciones

Números como sumas de primos consecutivos

En el artículo Integers as a sum of consecutive primes in 2,3,4,.. ways se presentan números que se pueden escribir como sumas de primos consecutivos de varias formas. Por ejemplo, el 41 se puede escribir de dos formas distintas

el 240 se puede escribir de tres formas

y el 311 se puede escribir de 4 formas

Definir la función

tal que (sumas x) es la lista de las formas de escribir x como suma
de dos o más números primos consecutivos. Por ejemplo,

Soluciones

Raíz entera

Definir la función

tal que (raizEnt x n) es la raíz entera n-ésima de x; es decir, el mayor número entero y tal que y^n <= x. Por ejemplo,

Comprobar con QuickCheck que para todo número natural n,

Soluciones

Soluciones en Maxima

Integración por el método de los rectángulos

La integral definida de una función f entre los límites a y b puede calcularse mediante la regla del rectángulo usando la fórmula

con a+nh+h/2 ≤ b < a+(n+1)h+h/2 y usando valores pequeños para h.

Definir la función

tal que (integral a b f h) es el valor de dicha expresión. Por ejemplo, el cálculo de la integral de f(x) = x^3 entre 0 y 1, con paso 0.01, es

Otros ejemplos son

Nota: Definir la función también en Maxima. Por ejemplo,

Soluciones

Solución en Maxima

Nota: En Maxima esta definida la función integrate para calcular integrales definidas. Por ejemplo,

Particiones en sumas de cuadrados

Definir las funciones

tales que

  • (particionesCuadradas n) es la listas de conjuntos de cuadrados cuya suma es n. Por ejemplo,

  • (nParticionesCuadradas n) es el número de conjuntos de cuadrados cuya suma es n. Por ejemplo,

  • (graficaParticionesCuadradas n) dibuja la gráfica de la sucesión

Por ejemplo, con (graficaParticionesCuadradas 100) se obtiene

Particiones_en_sumas_de_cuadrados

Soluciones

Referencias

Sumas de potencias de 3 primos

Los primeros números de la forma p²+q³+r⁴, con p, q y r primos son

Definir la sucesión

cuyos elementos son los números que se pueden escribir de la forma p²+q³+r⁴, con p, q y r primos. Por ejemplo,

Soluciones

Números primos de Hilbert

Un número de Hilbert es un entero positivo de la forma 4n+1. Los primeros números de Hilbert son 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, …

Un primo de Hilbert es un número de Hilbert n que no es divisible por ningún número de Hilbert menor que n (salvo el 1). Los primeros primos de Hilbert son 5, 9, 13, 17, 21, 29, 33, 37, 41, 49, 53, 57, 61, 69, 73, 77, 89, 93, 97, 101, 109, 113, 121, 129, 133, 137, …

Definir la sucesión

tal que sus elementos son los primos de Hilbert. Por ejemplo,

Soluciones