Números dorados

Los dígitos del número 2375 se pueden separar en dos grupos de igual tamaño ([7,2] y [5,3]) tales que para los correspondientes números (72 y 53) se verifique que la diferencia de sus cuadrados sea el número original (es decir, 72^2 – 53^2 = 2375).

Un número x es dorado si sus dígitos se pueden separar en dos grupos de igual tamaño tales que para los correspondientes números (a y b) se verifique que la diferencia de sus cuadrados sea el número original (es decir, b^2 – a^2 = x).

Definir la función

tales que (esDorado x) se verifica si x es un número dorado. Por
ejemplo,

Soluciones

Sucesión de cuadrados reducidos

La sucesión de cuadrados de orden n definida a partir de un número x se forma iniciándola en x y, para cada término z el siguiente es el número formado por los n primeros dígitos del cuadrado de z. Por ejemplo, para n = 4 y x = 1111, el primer término de la sucesión es 1111, el segundo es 1234 (ya que 1111^2 = 1234321) y el tercero es 1522 (ya que 1234^2 = 1522756).

Definir la función

tal que (sucCuadrados n x) es la sucesión de cuadrados de orden n definida a partir de x. Por ejemplo,

Soluciones

Terminaciones de Fibonacci

Definir la sucesión

cuyos elementos son los pares (n,x), donde x es el n-ésimo término de la sucesión de Fibonacci, tales que la terminación de x es n. Por ejemplo,

Soluciones

Sin ceros finales

Definir la función

tal que (sinCerosFinales n) es el número obtenido eliminando los ceros finales de n. Por ejemplo,

Comprobar con QuickCheck que, para cualquier número entero n,

Soluciones

Representación binaria de los números de Carol

Un número de Carol es un número entero de la forma 4^n-2^{n+1}-1 o, equivalentemente, (2^n-1)^2-2. Los primeros números de Carol son -1, 7, 47, 223, 959, 3967, 16127, 65023, 261119, 1046527.

Definir las funciones

tales que

  • (carol n) es el n-ésimo número de Carol. Por ejemplo,

  • (carolBinario n) es la representación binaria del n-ésimo número de Carol. Por ejemplo,

Comprobar con QuickCheck que, para n > 2, la representación binaria del n-ésimo número de Carol es el número formado por n-2 veces el dígito 1, seguido por un 0 y a continuación n+1 veces el dígito 1.

Soluciones

Referencias

Menor potencia de 2 comenzando un número dado

Definir las siguientes funciones

tales que

  • (potenciasDe2 a) es la lista de las potencias de 2 que comienzan por a. Por ejemplo,

  • (menorPotenciaDe2 a) es la menor potencia de 2 que comienza con el número a. Por ejemplo,

Comprobar con QuickCheck que, para todo entero positivo a, existe una potencia de 2 que empieza por a.

Soluciones

Referencias

Números de Dudeney

La semana pasada, Pepe Muñoz Santonja publicó en su blog Algo más que números el artículo Números de Dudeney en la base OEIS

Un número de Dudeney es un número entero n tal que el cubo de la suma de sus dígitos es igual a n. Por ejemplo, 512 es un número de Dudeney ya que (5+1+2)^3 = 8^3 = 512.

Se puede generalizar variando el exponente: Un número de Dudeney de orden k es un número entero n tal que la potencia k-ésima de la suma de sus dígitos es igual a n. Por ejemplo, 2401 es un número de Dudeney de orden 4 ya que (2+4+0+1)^4 = 7^4 = 2401.

Definir la función

tal que (numerosDudeney k) es la lista de los números de Dudeney oe orden k. Por ejemplo,

Comprobar con QuickCheck que 19683 es el mayor número de Dudeney de orden 3.

Soluciones

Números poderosos

Un número es poderoso si es igual a la suma de sus dígitos elevados a sus respectivas posiciones. Por ejemplo, los números 89, 135 y 1306 son poderosos ya que

Definir la función

tal que (esPoderoso n) se verifica si n es poderoso. Por ejemplo,

Comprobar con QuickCheck que 12157692622039623539 es el mayor número poderoso.

Soluciones

Cuadrados ondulantes

Un número se dice ondulante si sus cifras alternan entre dos valores. Por ejemplo, 272 es ondulante, así como 2727. El primer cuadrado ondulante no trivial (todos los cuadrados de dos cifras son ondulantes) es 121 = 11^2.

Definir la función

tal que (cuadradosOndulantes n) es la lista de los cuadrados ondulantes menores que n^2. Por ejemplo,

Nota: Este ejercicio ha sido propuesto por Marcos Giráldez.

Soluciones

Referencias

Primos de Kamenetsky

Un número primo se dice que es un primo de Kamenetsky si al anteponerlo cualquier dígito se obtiene un número compuesto. Por ejemplo, el 5 es un primo de Kamenetsky ya que 15, 25, 35, 45, 55, 65, 75, 85 y 95 son compuestos. También lo es 149 ya que 1149, 2149, 3149, 4149, 5149, 6149, 7149, 8149 y 9149 son compuestos.

Definir la sucesión

tal que sus elementos son los números primos de Kamenetsky. Por ejemplo,

Soluciones

Referencias