Menu Close

Etiqueta: scanl

Representación de Zeckendorf

Los primeros números de Fibonacci son

   1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ...

tales que los dos primeros son iguales a 1 y los siguientes se obtienen sumando los dos anteriores.

El teorema de Zeckendorf establece que todo entero positivo n se puede representar, de manera única, como la suma de números de Fibonacci no consecutivos decrecientes. Dicha suma se llama la representación de Zeckendorf de n. Por ejemplo, la representación de Zeckendorf de 100 es

   100 = 89 + 8 + 3

Hay otras formas de representar 100 como sumas de números de Fibonacci; por ejemplo,

   100 = 89 +  8 + 2 + 1
   100 = 55 + 34 + 8 + 3

pero no son representaciones de Zeckendorf porque 1 y 2 son números de Fibonacci consecutivos, al igual que 34 y 55.

Definir la función

   zeckendorf :: Integer -> [Integer]

tal que (zeckendorf n) es la representación de Zeckendorf de n. Por ejemplo,

   zeckendorf 100 == [89,8,3]
   zeckendorf 200 == [144,55,1]
   zeckendorf 300 == [233,55,8,3,1]
   length (zeckendorf (10^50000)) == 66097

Soluciones

module Representacion_de_Zeckendorf where
 
import Data.List (subsequences)
import Test.QuickCheck
 
-- 1ª solución
-- ===========
 
zeckendorf1 :: Integer -> [Integer]
zeckendorf1 = head . zeckendorf1Aux
 
zeckendorf1Aux :: Integer -> [[Integer]]
zeckendorf1Aux n =
  [xs | xs <- subsequences (reverse (takeWhile (<= n) (tail fibs))),
        sum xs == n,
        sinFibonacciConsecutivos xs]
 
-- fibs es la la sucesión de los números de Fibonacci. Por ejemplo,
--    take 14 fibs  == [1,1,2,3,5,8,13,21,34,55,89,144,233,377]
fibs :: [Integer]
fibs = 1 : scanl (+) 1 fibs
-- (sinFibonacciConsecutivos xs) se verifica si en la sucesión
-- decreciente de número de Fibonacci xs no hay dos consecutivos. Por
-- ejemplo, 
 
-- (sinFibonacciConsecutivos xs) se verifica si en la sucesión
-- decreciente de número de Fibonacci xs no hay dos consecutivos. Por
-- ejemplo, 
--    sinFibonacciConsecutivos [89, 8, 3]      ==  True
--    sinFibonacciConsecutivos [55, 34, 8, 3]  ==  False
sinFibonacciConsecutivos :: [Integer] -> Bool
sinFibonacciConsecutivos xs =
  and [x /= siguienteFibonacci y | (x,y) <- zip xs (tail xs)]
 
-- (siguienteFibonacci n) es el menor número de Fibonacci mayor que
-- n. Por ejemplo, 
--    siguienteFibonacci 34  ==  55
siguienteFibonacci :: Integer -> Integer
siguienteFibonacci n =
  head (dropWhile (<= n) fibs)
 
-- 2ª solución
-- ===========
 
zeckendorf2 :: Integer -> [Integer]
zeckendorf2 = head . zeckendorf2Aux
 
zeckendorf2Aux :: Integer -> [[Integer]]
zeckendorf2Aux n = map reverse (aux n (tail fibs))
  where aux 0 _ = [[]]
        aux m (x:y:zs)
            | x <= m     = [x:xs | xs <- aux (m-x) zs] ++ aux m (y:zs)
            | otherwise  = []
 
-- 3ª solución
-- ===========
 
zeckendorf3 :: Integer -> [Integer]
zeckendorf3 0 = []
zeckendorf3 n = x : zeckendorf3 (n - x)
  where x = last (takeWhile (<= n) fibs)
 
-- 4ª solución
-- ===========
 
zeckendorf4 :: Integer -> [Integer]
zeckendorf4 n = aux n (reverse (takeWhile (<= n) fibs))
  where aux 0 _      = []
        aux m (x:xs) = x : aux (m-x) (dropWhile (>m-x) xs)
 
-- Comprobación de equivalencia
-- ============================
 
-- La propiedad es
prop_zeckendorf :: Positive Integer -> Bool
prop_zeckendorf (Positive n) =
  all (== zeckendorf1 n)
      [zeckendorf2 n,
       zeckendorf3 n,
       zeckendorf4 n]
 
-- La comprobación es
--    λ> quickCheck prop_zeckendorf
--    +++ OK, passed 100 tests.
 
-- Comparación de eficiencia
-- =========================
 
-- La comparación es
--    λ> zeckendorf1 (7*10^4)
--    [46368,17711,4181,1597,89,34,13,5,2]
--    (1.49 secs, 2,380,707,744 bytes)
--    λ> zeckendorf2 (7*10^4)
--    [46368,17711,4181,1597,89,34,13,5,2]
--    (0.07 secs, 21,532,008 bytes)
--
--    λ> zeckendorf2 (10^6)
--    [832040,121393,46368,144,55]
--    (1.40 secs, 762,413,432 bytes)
--    λ> zeckendorf3 (10^6)
--    [832040,121393,46368,144,55]
--    (0.01 secs, 542,488 bytes)
--    λ> zeckendorf4 (10^6)
--    [832040,121393,46368,144,55]
--    (0.01 secs, 536,424 bytes)
--
--    λ> length (zeckendorf3 (10^3000))
--    3947
--    (3.02 secs, 1,611,966,408 bytes)
--    λ> length (zeckendorf4 (10^2000))
--    2611
--    (0.02 secs, 10,434,336 bytes)
--
--    λ> length (zeckendorf4 (10^50000))
--    66097
--    (2.84 secs, 3,976,483,760 bytes)

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Descomposiciones triangulares

Los números triangulares se forman como sigue

   *     *      *
        * *    * *
              * * *
   1     3      6

La sucesión de los números triangulares se obtiene sumando los números naturales. Así, los 5 primeros números triangulares son

    1 = 1
    3 = 1 + 2
    6 = 1 + 2 + 3
   10 = 1 + 2 + 3 + 4
   15 = 1 + 2 + 3 + 4 + 5

Definir la función

   descomposicionesTriangulares :: Int -> [(Int, Int, Int)]

tal que (descomposicionesTriangulares n) es la lista de las ternas correspondientes a las descomposiciones de n en tres sumandos formados por números triangulares. Por ejemplo,

   descomposicionesTriangulares  4 == []
   descomposicionesTriangulares  5 == [(1,1,3)]
   descomposicionesTriangulares 12 == [(1,1,10),(3,3,6)]
   descomposicionesTriangulares 30 == [(1,1,28),(3,6,21),(10,10,10)]
   descomposicionesTriangulares 61 == [(1,15,45),(3,3,55),(6,10,45),(10,15,36)]
   descomposicionesTriangulares 52 == [(1,6,45),(1,15,36),(3,21,28),(6,10,36),(10,21,21)]
   descomposicionesTriangulares 82 == [(1,3,78),(1,15,66),(1,36,45),(6,10,66),(6,21,55),(10,36,36)]
   length (descomposicionesTriangulares (5*10^5)) == 124

Soluciones

import Test.QuickCheck
 
-- 1ª solución
-- ===========
 
descomposicionesTriangulares1 :: Int -> [(Int, Int, Int)]
descomposicionesTriangulares1 n =
  [(x,y,z) | x <- xs,
             y <- xs,
             z <- xs,
             x <= y && y <= z,
             x + y + z == n]
  where xs = takeWhile (<=n) triangulares
 
-- triangulares es la lista de los números triangulares. Por ejemplo,
--    take 9 triangulares  ==  [1,3,6,10,15,21,28,36,45]
triangulares :: [Int]
triangulares = scanl (+) 1 [2..]
 
-- 2ª solución
-- ===========
 
descomposicionesTriangulares2 :: Int -> [(Int, Int, Int)]
descomposicionesTriangulares2 n =
  [(x,y,z) | x <- xs,
             y <- xs,
             x <= y,
             z <- xs,
             y <= z,
             x + y + z == n]
  where xs = takeWhile (<=n) triangulares
 
-- 3ª solución
-- ===========
 
descomposicionesTriangulares3 :: Int -> [(Int, Int, Int)]
descomposicionesTriangulares3 n =
  [(x,y,z) | x <- xs,
             y <- xs,
             x <= y,
             let z = n - x - y,
             y <= z,
             z `elem` xs]
  where xs = takeWhile (<=n) triangulares
 
-- 4ª solución
-- ===========
 
descomposicionesTriangulares4 :: Int -> [(Int, Int, Int)]
descomposicionesTriangulares4 n =
  [(x,y,n-x-y) | x <- xs,
                 y <- dropWhile (<x) xs,
                 let z = n - x - y,
                 y <= z,
                 z `elem` xs]
  where xs = takeWhile (<=n) triangulares
 
-- Comprobación de equivalencia
-- ============================
 
-- La propiedad es
prop_descomposicionesTriangulares ::  Positive Int -> Bool
prop_descomposicionesTriangulares (Positive n) =
  all (== descomposicionesTriangulares1 n)
      [descomposicionesTriangulares2 n,
       descomposicionesTriangulares3 n,
       descomposicionesTriangulares4 n]
 
-- La comprobación es
--    λ> quickCheck prop_descomposicionesTriangulares
--    +++ OK, passed 100 tests.
 
-- Comparación de eficiencia
-- =========================
 
-- La comparación es
--   λ> last (descomposicionesTriangulares1 (2*10^4))
--   (5671,6328,8001)
--   (3.34 secs, 1,469,517,168 bytes)
--   λ> last (descomposicionesTriangulares2 (2*10^4))
--   (5671,6328,8001)
--   (1.29 secs, 461,433,928 bytes)
--   λ> last (descomposicionesTriangulares3 (2*10^4))
--   (5671,6328,8001)
--   (0.08 secs, 6,574,056 bytes)
--
--   λ> last (descomposicionesTriangulares3 (5*10^5))
--   (140185,148240,211575)
--   (2.12 secs, 151,137,280 bytes)
--   λ> last (descomposicionesTriangulares4 (5*10^5))
--   (140185,148240,211575)
--   (2.30 secs, 103,280,216 bytes)

El código se encuentra en [GitHub](https://github.com/jaalonso/Exercitium/blob/main/src/Descomposiciones_triangulares.hs).

La elaboración de las soluciones se describe en el siguiente vídeo

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Números triangulares con n cifras distintas

Los números triangulares se forman como sigue

   *     *      *
        * *    * *
              * * *
   1     3      6

La sucesión de los números triangulares se obtiene sumando los números naturales. Así, los 5 primeros números triangulares son

    1 = 1
    3 = 1 + 2
    6 = 1 + 2 + 3
   10 = 1 + 2 + 3 + 4
   15 = 1 + 2 + 3 + 4 + 5

Definir la función

   triangularesConCifras :: Int -> [Integer]

tal que (triangulares n) es la lista de los números triangulares con n cifras distintas. Por ejemplo,

   take 6 (triangularesConCifras 1)   ==  [1,3,6,55,66,666]
   take 6 (triangularesConCifras 2)   ==  [10,15,21,28,36,45]
   take 6 (triangularesConCifras 3)   ==  [105,120,136,153,190,210]
   take 5 (triangularesConCifras 4)   ==  [1035,1275,1326,1378,1485]
   take 2 (triangularesConCifras 10)  ==  [1062489753,1239845706]

Soluciones

import Data.List (nub)
import Test.QuickCheck
 
-- 1ª solución
-- ===========
 
triangularesConCifras1 :: Int -> [Integer]
triangularesConCifras1 n =
  [x | x <- triangulares1,
       nCifras x == n]
 
-- triangulares1 es la lista de los números triangulares. Por ejemplo,
--    take 10 triangulares1 == [1,3,6,10,15,21,28,36,45,55]
triangulares1 :: [Integer]
triangulares1 = map triangular [1..]
 
triangular :: Integer -> Integer
triangular 1 = 1
triangular n = triangular (n-1) + n
 
-- (nCifras x) es el número de cifras distintas del número x. Por
-- ejemplo,
--    nCifras 325275  ==  4
nCifras :: Integer -> Int
nCifras = length . nub . show
 
-- 2ª solución
-- ===========
 
triangularesConCifras2 :: Int -> [Integer]
triangularesConCifras2 n =
  [x | x <- triangulares2,
       nCifras x == n]
 
triangulares2 :: [Integer]
triangulares2 = [(n*(n+1)) `div` 2 | n <- [1..]]
 
-- 3ª solución
-- ===========
 
triangularesConCifras3 :: Int -> [Integer]
triangularesConCifras3 n =
  [x | x <- triangulares3,
       nCifras x == n]
 
triangulares3 :: [Integer]
triangulares3 = 1 : [x+y | (x,y) <- zip [2..] triangulares3]
 
-- 4ª solución
-- ===========
 
triangularesConCifras4 :: Int -> [Integer]
triangularesConCifras4 n =
  [x | x <- triangulares4,
       nCifras x == n]
 
triangulares4 :: [Integer]
triangulares4 = 1 : zipWith (+) [2..] triangulares4
 
-- 5ª solución
-- ===========
 
triangularesConCifras5 :: Int -> [Integer]
triangularesConCifras5 n =
  [x | x <- triangulares5,
       nCifras x == n]
 
triangulares5 :: [Integer]
triangulares5 = scanl (+) 1 [2..]
 
-- Comprobación de equivalencia
-- ============================
 
-- La 1ª propiedad es
prop_triangularesConCifras1 :: Bool
prop_triangularesConCifras1 =
  [take 2 (triangularesConCifras1 n) | n <- [1..7]] ==
  [take 2 (triangularesConCifras2 n) | n <- [1..7]]
 
-- La comprobación es
--    λ> prop_triangularesConCifras1
--    True
 
-- La 2ª propiedad es
prop_triangularesConCifras2 :: Int -> Bool
prop_triangularesConCifras2 n =
  all (== take 5 (triangularesConCifras2 n'))
      [take 5 (triangularesConCifras3 n'),
       take 5 (triangularesConCifras4 n'),
       take 5 (triangularesConCifras5 n')]
  where n' = 1 + n `mod` 9
 
-- La comprobación es
--    λ> quickCheck prop_triangularesConCifras
--    +++ OK, passed 100 tests.
 
-- Comparación de eficiencia
-- =========================
 
-- La comparación es
--    λ> (triangularesConCifras1 3) !! 220
--    5456556
--    (2.48 secs, 1,228,690,120 bytes)
--    λ> (triangularesConCifras2 3) !! 220
--    5456556
--    (0.01 secs, 4,667,288 bytes)
--
--    λ> (triangularesConCifras2 3) !! 600
--    500010500055
--    (1.76 secs, 1,659,299,872 bytes)
--    λ> (triangularesConCifras3 3) !! 600
--    500010500055
--    (1.67 secs, 1,603,298,648 bytes)
--    λ> (triangularesConCifras4 3) !! 600
--    500010500055
--    (1.20 secs, 1,507,298,248 bytes)
--    λ> (triangularesConCifras5 3) !! 600
--    500010500055
--    (1.15 secs, 1,507,298,256 bytes)

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

La conjetura de Gilbreath

Partiendo de los 5 primeros números primos y calculando el valor absoluto de la diferencia de cada dos números consecutivos hasta quedarse con un único número se obtiene la siguiente tabla:

   2, 3, 5, 7, 11
   1, 2, 2, 4 
   1, 0, 2
   1, 2 
   1

Se observa que todas las filas, salvo la inicial, comienzan con el número 1.

Repitiendo el proceso pero empezando con los 8 primeros números primos se obtiene la siguiente tabla:

   2, 3, 5, 7, 11, 13, 17, 19 
   1, 2, 2, 4,  2,  4,  2  
   1, 0, 2, 2,  2,  2 
   1, 2, 0, 0,  0 
   1, 2, 0, 0 
   1, 2, 0 
   1, 2 
   1

Se observa que, de nuevo, todas las filas, salvo la inicial, comienza con el número 1.

La conjetura de Gilbreath afirma que si escribimos la sucesión de números primos completa y después construimos las correspondientes sucesiones formadas por el valor absoluto de la resta de cada pareja de números consecutivos, entonces todas esas filas que obtenemos comienzan siempre por 1.

El objetivo de este ejercicio es comprobar experimentalmente dicha conjetura.

Para la representación, usaremos la simétrica de la que hemos comentado anteriormente; es decir,

    2
    3, 1
    5, 2, 1
    7, 2, 0, 1
   11, 4, 2, 2, 1
   13, 2, 2, 0, 2, 1
   17, 4, 2, 0, 0, 2, 1
   19, 2, 2, 0, 0, 0, 2, 1

en la que la primera columna son los números primos y el elemento de la fila i y columna j (con i, j > 1) es el valor absoluto de la diferencia de los elementos (i,j-1) e (i-1,j-1).

Definir las siguientes funciones

   siguiente           :: Integer -> [Integer] -> [Integer]
   triangulo           :: [[Integer]]
   conjeturaGilbreath  :: Int -> Bool

tales que

  • (siguiente x ys) es la línea siguiente de la ys que empieza por x en la tabla de Gilbreath; es decir, si ys es [y1,y2,…,yn], entonces (siguiente x ys) es [x,|y1-x|,|y2-|y1-x||,…]. Por ejemplo,
     siguiente  7 [5,2,1]               ==  [7,2,0,1]
     siguiente 29 [23,4,2,0,0,0,0,2,1]  ==  [29,6,2,0,0,0,0,0,2,1]
  • triangulo es el triángulo de Gilbreath. Por ejemplo,
     λ> take 10 triangulo
     [[ 2],
      [ 3,1],
      [ 5,2,1],
      [ 7,2,0,1],
      [11,4,2,2,1],
      [13,2,2,0,2,1],
      [17,4,2,0,0,2,1],
      [19,2,2,0,0,0,2,1],
      [23,4,2,0,0,0,0,2,1],
      [29,6,2,0,0,0,0,0,2,1]]
  • (conjeturaGilbreath n) se verifica si se cumple la conjetura de Gilbreath para los n primeros números primos; es decir, en el triángulo de Gilbreath cuya primera columna son los n primeros números primos, todas las filas a partir de la segunda terminan en 1. Por ejemplo,
     λ> conjeturaGilbreath 1000
     True

Soluciones

import Data.Numbers.Primes
 
siguiente :: Integer -> [Integer] -> [Integer]
siguiente x ys = scanl (\m n -> abs (m-n)) x ys 
 
triangulo :: [[Integer]]
triangulo = 
  [2] : [siguiente x ys | (x,ys) <- zip (tail primes) triangulo]
 
conjeturaGilbreath :: Int -> Bool
conjeturaGilbreath n = all p (tail (take n triangulo))
  where p xs = last xs == 1

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Pensamiento

“La simplicidad es la última sofisticación.”

Leonardo da Vinci.

Cálculo de pi mediante el método de Newton

El método de Newton para el cálculo de pi se basa en la relación
Calculo_de_pi_mediante_el_metodo_de_Newton_1
y en el desarrollo del arco seno
Calculo_de_pi_mediante_el_metodo_de_Newton_2
de donde se obtiene la fórmula
Calculo_de_pi_mediante_el_metodo_de_Newton_3

La primeras aproximaciones son

   a(0) = 6*(1/2)                               = 3.0
   a(1) = 6*(1/2+1/(2*3*2^3))                   = 3.125
   a(2) = 6*(1/2+1/(2*3*2^3)+(1*3)/(2*4*5*2^5)) = 3.1390625

Definir las funciones

   aproximacionPi :: Int -> Double
   grafica        :: [Int] -> IO ()

tales que

  • (aproximacionPi n) es la n-ésima aproximación de pi con la fórmula de Newton. Por ejemplo,
     aproximacionPi 0   ==  3.0
     aproximacionPi 1   ==  3.125
     aproximacionPi 2   ==  3.1390625
     aproximacionPi 10  ==  3.1415926468755613
     aproximacionPi 21  ==  3.141592653589793
     pi                 ==  3.141592653589793
  • (grafica xs) dibuja la gráfica de las k-ésimas aproximaciones de pi donde k toma los valores de la lista xs. Por ejemplo, (grafica [1..30]) dibuja
    Calculo_de_pi_mediante_el_metodo_de_Newton_4

Soluciones

import Graphics.Gnuplot.Simple
 
-- 1ª definición
-- =============
 
aproximacionPi :: Int -> Double
aproximacionPi n = 6 * arcsinX
  where arcsinX = 0.5 + sum (take n factoresN)
 
factoresN :: [Double]
factoresN = zipWith (*) (potenciasK 3) fraccionesPI
 
potenciasK :: Double -> [Double]
potenciasK k = (0.5**k)/k : potenciasK (k+2)
 
fraccionesPI :: [Double]
fraccionesPI =
  scanl (*) (1/2) (tail (zipWith (/) [1,3..] [2,4..]))
 
-- 2ª definición
-- =============
 
aproximacionPi2 :: Int -> Double
aproximacionPi2 n = 6 * (serie !! n)
 
serie :: [Double]
serie = scanl1 (+) (zipWith (/)
                            (map fromIntegral numeradores)
                            (map fromIntegral denominadores))
  where numeradores    = 1 : scanl1 (*) [1,3..]
        denominadores  = zipWith (*) denominadores1 denominadores2
        denominadores1 = 2 : scanl1 (*) [2,4..]
        denominadores2 = 1 : [n * 2^n | n <- [3,5..]]
 
grafica :: [Int] -> IO ()
grafica xs = 
    plotList [Key Nothing]
             [(k,aproximacionPi k) | k <- xs]

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Pensamiento

“Mi trabajo siempre trató de unir lo verdadero con lo bello; pero cuando tuve que elegir uno u otro, generalmente elegí lo bello.”

Hermann Weyl.