Cadenas de sumas de factoriales de los dígitos

Dado un número n se considera la sucesión cuyo primer término es n y los restantes se obtienen sumando los factoriales de los dígitos del anterior. Por ejemplo, la sucesión que empieza en 69 es

La cadena correspondiente a un número n son los términos de la sucesión que empieza en n hasta la primera repetición de un elemento en la sucesión. Por ejemplo, la cadena de 69 es

Consta de una parte no periódica ([69,363600]) y de una periódica ([1454,169,363601]).

Definir las funciones

tales que

  • (cadena n es la cadena correspondiente al número n. Por ejemplo,

  • (periodo n) es la parte periódica de la cadena de n. Por ejemplo,

Soluciones

Mayor número equidigital

Definir la función

tal que (mayorEquidigital x) es el mayor número que se puede contruir con los dígitos de x. Por ejemplo,

Soluciones

Problema de las 3 jarras

En el problema de las tres jarras (A,B,C) se dispone de tres jarras de capacidades A, B y C litros con A > B > C y A par. Inicialmente la jarra mayor está llena y las otras dos vacías. Queremos, trasvasando adecuadamente el líquido entre las jarras, repartir por igual el contenido inicial entre las dos jarras mayores. Por ejemplo, para el problema (8,5,3) el contenido inicial es (8,0,0) y el final es (4,4,0).

Definir las funciones

tales que

  • (solucionesTresJarras p) es la lista de soluciones del problema de las tres jarras p. Por ejemplo,

  • (tresJarras p) es una solución del problema de las tres jarras p con el mínimo mínimo número de trasvase, si p tiene solución y Nothing, en caso contrario. Por ejemplo,

Soluciones

Recorrido en ZigZag

El recorrido en ZigZag de una matriz consiste en pasar de la primera fila hasta la última, de izquierda a derecha en las filas impares y de derecha a izquierda en las filas pares, como se indica en la figura.

Definir la función

tal que (recorridoZigZag m) es la lista con los elementos de la matriz m cuando se recorre esta en ZigZag. Por ejemplo,

Soluciones

Problema de las jarras

En el problema de las jarras (A,B,C) se tienen dos jarras sin marcas de medición, una de A litros de capacidad y otra de B. También se dispone de una bomba que permite llenar las jarras de agua.

El problema de las jarras (A,B,C) consiste en determinar cómo se puede lograr tener exactamente C litros de agua en alguna de las dos jarras.

Definir la función

tal (jarras (a,b,c)) es una solución del problema de las jarras (a,b,c) con el mínimo número de movimientos, si el problema tiene solución y Nothing, en caso contrario. Por ejemplo,

La interpretación de la solución anterior es

Otros ejemplos:

Soluciones

Sucesiones alícuotas

La sucesión alícuota de un número x es la sucesión cuyo primer término es x y cada otro término es la suma de los divisores propios del término anterior. Por ejemplo, la sucesión alícuota de 10 es [10,8,7,1,0,0,0] ya que

Definir la función

tal que (sucAlicuota x) es la sucesión alícuota de x. Por ejemplo,

Soluciones

Máximo producto de pares en la lista

Definir la función

tal que (maximoProducto xs) es el mayor elemento de xs que se puede escribir
como producto de dos elementos distintos de xs o Nothing, en el caso de que
ningún elemento de xs se pueda escribir como producto de dos elementos
distintos de xs, donde xs es una lista de números mayores que 0. Por ejemplo,

En el primer ejemplo, 30 es el producto de 10 y 3; en el segundo, 4 es el producto de 2 y 2 y en el tercero, 35 es el producto de 1 y 35.

Soluciones

Suma minimal de productos de pares de elementos consecutivos

Al permutar los elementos de la lista [1,2,3,4] se obtienen los siguientes valores de la suma de pares de elementos consecutivos:

  • 10, por ejemplo con [1,4,2,3] ya que 1×4+2×3 = 10
  • 11, por ejemplo con [1,3,2,4] ya que 1×3+2×4 = 11
  • 14, por ejemplo con [1,2,3,4] ya que 1×2+3×4 = 14

Por tanto, la mínima suma de los productos de elementos consecutivos en las permutaciones de [1,2,3,4] es 10 y una permutación con dicha suma es [1,4,2,3].

Definir las funciones

tales que

  • (minimaSumaProductos xs) es la mínima suma de los productos de elementos consecutivos en las permutaciones de lista xs, suponiendo que xs tiene un número par de elementos. Por ejemplo,

  • (permutacionMinimal xs) es una permutación de xs cuya suma de productos de elementos consecutivos de xs es la mínima suma de los productos de elementos consecutivos en las permutaciones de lista xs, suponiendo que xs tiene un número par de elementos. Por ejemplo,

Soluciones

La conjetura de Rodolfo

El pasado 1 de enero, Claudio Meller publicó el artículo La conjetura de Rodolfo que afirma que

Todos los números naturales se pueden números pueden expresarse como la suma de un capicúa y un capicúa especial (siendo los capicúas especiales los números que al quitarles los ceros finales son capicúas; por ejemplo, 32300, 50500 y 78987).

Definir las funciones

tales que

  • (descomposiciones x) es la lista de las descomposiciones de x como la suma de un capicúa y un capicúa especial. Por ejemplo,

  • contraejemplosConjeturaRodolfo es la lista de contraejemplos de la conjetura de Rodolfo; es decir, de los números que no pueden expresarse com la suma de un capicúa y un capicúa especial. Por ejemplo,

Soluciones

Sumas de dos capicúas

Definir las funciones

tales que

  • (sumas2Capicuas x) es la lista de las descomposiciones de x como suma de dos capicúas (con el primer sumando menor o igual que el segundo). Por ejemplo,

  • noSuma2Capicuas es la sucesión de los números que no se pueden escribir como suma de dos capicúas. Por ejemplo,

Soluciones

Sumas de tres capicúas

Definir la función

tales que (sumas3Capicuas x) es la lista de las descomposiciones de x como suma de tres capicúas (con los sumandos no decrecientes). Por ejemplo,

Comprobar con QuickCheck que todo número natural se puede escribir como suma de tres capicúas.

Soluciones

Sucesión de capicúas

Definir las funciones

tales que

  • capicuas es la sucesión de los números capicúas. Por ejemplo,

  • (posicionCapicua x) es la posición del número capicúa x en la sucesión de los capicúas. Por ejemplo,

Soluciones

Elementos que respetan la ordenación

Se dice que un elemento x de una lista xs respeta la ordenación si x es mayor o igual que todos lo que tiene delante en xs y es menor o igual que todos lo que tiene detrás en xs. Por ejemplo, en la lista lista [3,2,1,4,6,5,7,9,8] el número 4 respeta la ordenación pero el número 5 no la respeta (porque es mayor que el 6 que está delante).

Definir la función

tal que (respetuosos xs) es la lista de los elementos de xs que respetan la ordenación. Por ejemplo,

Comprobar con QuickCheck que para cualquier lista de enteros xs se verifican las siguientes propiedades:

  • todos los elementos de (sort xs) respetan la ordenación y
  • en la lista (nub (reverse (sort xs))) hay como máximo un elemento que respeta la ordenación.

Soluciones

Sin ceros finales

Definir la función

tal que (sinCerosFinales n) es el número obtenido eliminando los ceros finales de n. Por ejemplo,

Comprobar con QuickCheck que, para cualquier número entero n,

Soluciones

Representación binaria de los números de Carol

Un número de Carol es un número entero de la forma 4^n-2^{n+1}-1 o, equivalentemente, (2^n-1)^2-2. Los primeros números de Carol son -1, 7, 47, 223, 959, 3967, 16127, 65023, 261119, 1046527.

Definir las funciones

tales que

  • (carol n) es el n-ésimo número de Carol. Por ejemplo,

  • (carolBinario n) es la representación binaria del n-ésimo número de Carol. Por ejemplo,

Comprobar con QuickCheck que, para n > 2, la representación binaria del n-ésimo número de Carol es el número formado por n-2 veces el dígito 1, seguido por un 0 y a continuación n+1 veces el dígito 1.

Soluciones

Referencias

Problema de las jarras

En el problema de las jarras (A,B,C) se tienen dos jarras sin marcas de medición, una de A litros de capacidad y otra de B. También se dispone de una bomba que permite llenar las jarras de agua.

El problema de las jarras (A,B,C) consiste en determinar cómo se puede lograr tener exactamente C litros de agua en la jarra de A litros de capacidad.

Definir, mediante búsqueda en espacio de estados, la función

tal (jarras (a,b,c)) es la lista de las soluciones del problema de las
jarras (a,b,c). Por ejemplo,

La interpretación [(0,0),(4,0),(1,3),(1,0),(0,1),(4,1),(2,3)] es:

  • (0,0) se inicia con las dos jarras vacías,
  • (4,0) se llena la jarra de 4 con el grifo,
  • (1,3) se llena la de 3 con la de 4,
  • (1,0) se vacía la de 3,
  • (0,1) se pasa el contenido de la primera a la segunda,
  • (4,1) se llena la primera con el grifo,
  • (2,3) se llena la segunda con la primera.

Otros ejemplos

Nota: Las librerías necesarias se encuentran en la página de códigos.

Soluciones

Sucesión duplicadora

Para cada entero positivo n, existe una única sucesión que empieza en 1, termina en n y en la que cada uno de sus elementos es el doble de su anterior o el doble más uno. Dicha sucesión se llama la sucesión duplicadora de n. Por ejemplo, la sucesión duplicadora de 13 es [1, 3, 6, 13], ya que

Definir la función

tal que (duplicadora n) es la sucesión duplicadora de n. Por ejemplo,

Soluciones

Densidad de números no monótonos

Un número entero positivo se dice que es

  • creciente si cada uno de sus dígitos es menor o igual que el que está a su derecha; por ejemplo, 134479.
  • decreciente si cada uno de sus dígitos es menor o igual que el que está a su derecha; por ejemplo, 664210.
  • no monótono si no es creciente ni decreciente; por ejemplo, 155369.

Para cada entero positivo n, la densidad números no monótonos hasta n es el cociente entre la cantidad de n números no monótonos entre menores o iguales que n y el número n. Por ejemplo, hasta 150 hay 19 números no monótonos (101, 102, 103, 104, 105, 106, 107, 108, 109, 120, 121, 130, 131, 132, 140, 141, 142, 143 y 150); por tanto, la densidad hasta 150 es 19/150 = 0.12666667

Definir las siguientes funciones

tales que

  • (densidad n) es la densidad de números no monótonos hasta n. Por ejemplo,

  • (menorConDensidadMayor x) es el menor número n tal que la densidad de números no monótonos hasta n es mayor o igual que x. Por ejemplo,

Soluciones

Conjuntos de primos emparejables

Un conjunto de primos emparejables es un conjunto S de números primos tales que al concatenar cualquier par de elementos de S se obtiene un número primo. Por ejemplo, {3, 7, 109, 673} es un conjunto de primos emparejables ya que sus elementos son primos y las concatenaciones de sus parejas son 37, 3109, 3673, 73, 7109, 7673, 1093, 1097, 109673, 6733, 6737 y 673109 son primos.

Definir la función

tal que (emparejables n m) es el conjunto de los conjuntos emparejables de n elementos menores que n. Por ejemplo,

Soluciones

Mayor sección inicial sin repetidos

Definir la función

tal que (seccion xs) es el mayor sección inicial de xs que no contiene ningún elemento repetido. Por ejemplo:

Soluciones

Menor no expresable como suma

Definir la función

tal que (menorNoSuma xs) es el menor número que no se puede escribir como suma de un subconjunto de xs, donde se supone que xs es un conjunto de números enteros positivos. Por ejemplo,

Comprobar con QuickCheck que para todo n,

Soluciones

Particiones en sumas de cuadrados

Definir las funciones

tales que

  • (particionesCuadradas n) es la listas de conjuntos de cuadrados cuya suma es n. Por ejemplo,

  • (nParticionesCuadradas n) es el número de conjuntos de cuadrados cuya suma es n. Por ejemplo,

  • (graficaParticionesCuadradas n) dibuja la gráfica de la sucesión

Por ejemplo, con (graficaParticionesCuadradas 100) se obtiene

Particiones_en_sumas_de_cuadrados

Soluciones

Referencias

Siembra de listas

Definir la función

tal que (siembra xs) es la lista ys obtenida al repartir cada elemento x de la lista xs poniendo un 1 en las x siguientes posiciones de la lista ys. Por ejemplo,

El tercer ejemplo se obtiene sumando la siembra de 4 en la posición 0 (como el ejemplo 1) y el 2 en la posición 1 (como el ejemplo 2). Otros ejemplos son

Comprobar con QuickCheck que la suma de los elementos de (siembra xs) es igual que la suma de los de xs.

Nota 1: Se supone que el argumento es una lista de números no negativos y que se puede ampliar tanto como sea necesario para repartir los elementos.

Nota 2: Este ejercicio es parte del examen del grupo 3 del 2 de diciembre.

Soluciones

Capicúas productos de dos números de dos dígitos

El número 9009 es capicúa y es producto de dos números de dos dígitos, pues 9009 = 91*99.

Definir la lista

cuyos elementos son los números capicúas que son producto de 2 números de dos dígitos. Por ejemplo,

Soluciones

Rotaciones de un número

Definir la función

(rotacionesNumero n) es la lista de las rotaciones obtenidas desplazando el primer dígito de n al final. Por ejemplo,

Soluciones

Distancia invierte y suma hasta capicúa

Un número es capicúa si es igual leído de izquierda a derecha que de derecha a izquierda; por ejemplo, el 4884.

El transformado «invierte y suma» de un número x es la suma de x y su número invertido; es decir, el número resultante de la inversión del orden en el que aparecen sus dígitos. Por ejemplo, el transformado de 124 es 124 + 421 = 545.

Se aplica la transformación «invierte y suma» hasta obtener un capicúa. Por ejemplo, partiendo del número 87, el proceso es

El número de pasos de dicho proceso es la distancia capicúa del número; por ejemplo, la distancia capicúa de 87 es 4.

Definir la función

tal que (distanciaIS x) es la distancia capicúa de x. Por ejemplo,

Soluciones

Mayor capicúa producto de dos números de n cifras

Un capicúa es un número que es igual leído de izquierda a derecha que de derecha a izquierda.

Definir la función

tal que (mayorCapicuaP n) es el mayor capicúa que es el producto de dos números de n cifras. Por ejemplo,

Soluciones

2015 y los números con factorización capicúa

Un número tiene factorización capicúa si puede escribir como un producto de números primos tal que la concatenación de sus dígitos forma un número capicúa. Por ejemplo, el 2015 tiene factorización capicúa ya que 2015 = 13·5·31, los factores son primos y su concatenación es 13531 que es capicúa.

Definir la sucesión

formada por los números que tienen factorización capicúa. Por ejemplo,

Usando conFactorizacionesCapicuas escribir expresiones cuyos valores sean las respuestas a las siguientes preguntas y calcularlas

  1. ¿Qué lugar ocupa el 2015 en la sucesión?
  2. ¿Cuál fue el anterior año con factorización capicúa?
  3. ¿Cuál será el siguiente año con factorización capicúa?

Soluciones

Elementos más frecuentes

Definir la función

tal que (masFrecuentes n xs) es la lista de los pares formados por los elementos de xs que aparecen más veces junto con el número de veces que aparecen. Por ejemplo,

Soluciones

Desemparejamiento de listas

Definir la función

tal que (desemparejada ps) es el par de lista (xs,ys) tal que al emparejar (con zip) xs e ys devuelve ps. Por ejemplo,

Comprobar con QuickCheck que

  • desemparejada es equivalente a la función predefinida unzip.
  • si el valor de (desemparejada ps) es (xs,ys), entonces (zip xs ys) es igual a ps.

Soluciones