Sucesión de Lichtenberg

La sucesión de Lichtenberg esta formada por la representación decimal de los números binarios de la sucesión de dígitos 0 y 1 alternados Los primeros términos de ambas sucesiones son

Definir las funciones

tales que

  • lichtenberg es la lista cuyos elementos son los términos de la sucesión de Lichtenberg. Por ejemplo,

  • (graficaLichtenberg n) dibuja la gráfica del número de dígitos de los n primeros términos de la sucesión de Lichtenberg. Por ejemlo, (graficaLichtenberg 100) dibuja
    Sucesion_de_Lichtenberg

Comprobar con QuickCheck que todos los términos de la sucesión de Lichtenberg, a partir del 4º, son números compuestos.

Soluciones

Sumas parciales de Juzuk

En 1939 Dov Juzuk extendió el método de Nicómaco del cálculo de los cubos. La extensión se basaba en los siguientes pasos:

  • se comienza con la lista de todos los enteros positivos

  • se agrupan tomando el primer elemento, los dos siguientes, los tres
    siguientes, etc.

  • se seleccionan los elementos en posiciones pares

  • se suman los elementos de cada grupo

  • se calculan las sumas acumuladas

Las sumas obtenidas son las cuantas potencias de los números enteros positivos.

Definir las funciones

tal que

  • (listasParcialesJuzuk xs) es lalista de ls listas parciales de Juzuk; es decir, la selección de los elementos en posiciones pares de la agrupación de los elementos de xs tomando el primer elemento, los dos siguientes, los tres siguientes, etc. Por ejemplo,

  • (sumasParcialesJuzuk xs) es la lista de las sumas acumuladas de los elementos de las listas de Juzuk generadas por xs. Por ejemplo,

Comprobar con QuickChek que, para todo entero positivo n,

  • el elemento de (sumasParcialesJuzuk [1..]) en la posición (n-1) es n^4.
  • el elemento de (sumasParcialesJuzuk [1,3..]) en la posición (n-1) es n^2*(2*n^2 - 1).
  • el elemento de (sumasParcialesJuzuk [1,5..]) en la posición (n-1) es 4*n^4-3*n^2.
  • el elemento de (sumasParcialesJuzuk [2,3..]) en la posición (n-1) es n^2*(n^2+1).

Soluciones

Escalada hasta un primo

Este ejercicio está basado en el artículo La conjetura de la «escalada hasta un primo» publicado esta semana por Miguel Ángel Morales en su blog Gaussianos.

La conjetura de escalada hasta un primo trata, propuesta por John Horton Conway, es sencilla de plantear, pero primero vamos a ver qué es eso de escalar hasta un primo. Tomamos un número cualquiera y lo descomponemos en factores primos (colocados en orden ascendente). Si el número era primo, ya hemos acabado; si no era primo, construimos el número formado por los factores primos y los exponentes de los mismos colocados tal cual salen en la factorización. Con el número obtenido hacemos lo mismo que antes. La escalada finaliza cuando obtengamos un número primo. Por ejemplo, para obtener la escalada prima de 1400, como no es primo, se factoriza (obteniéndose 2^3 * 5^2 * 7) y se unen bases y exponentes (obteniéndose 23527). Con el 23527 se repite el proceso obteniéndose la factorización (7 * 3361) y su unión (73361). Como el 73361 es primo, termina la escalada. Por tanto, la escalada de 1400 es [1400,23527,73361].

La conjetura de Conway sobre «escalada hasta un primo» dice que todo número natural mayor o igual que 2 termina su escalada en un número primo.

Definir las funciones

tales que

  • (escaladaPrima n) es la escalada prima de n. Por ejemplo,

  • (longitudEscaladaPrima n) es la longitud de la escalada prima de n. Por ejemplo,

  • (longitudEscaladaPrimaAcotada n k) es el mínimo entre la longitud de la escalada prima de n y k. Por ejemplo,

  • (graficaEscalada n k) dibuja la gráfica de (longitudEscaladaPrimaAcotada x k) para x entre 2 y n. Por ejemplo, (graficaEscalada 120 15) dibuja
    Escalada_hasta_un_primo

Soluciones

Sumas parciales de Nicómaco

Nicómaco de Gerasa vivió en Palestina entre los siglos I y II de nuestra era. Escribió Arithmetike eisagoge (Introducción a la aritmética) que es el primer trabajo en donde se trata la Aritmética de forma separada a la Geometría. En el tratado se encuentra la siguiente proposición: «si se escriben los números impares

entonces el primero es el cubo de 1; la suma de los dos siguientes, el cubo de 2; la suma de los tres siguientes, el cubo de 3; y así sucesivamente.»

Definir las siguientes funciones

tales que

  • (listasParciales xs) es la lista obtenido agrupando los elementos de la lista infinita xs de forma que la primera tiene 0 elementos; la segunda, el primer elemento de xs; la tercera, los dos siguientes; y así sucesivamente. Por ejemplo,

  • (sumasParciales xs) es la lista de las sumas parciales de la lista infinita xs. Por ejemplo,

Comprobar con QuickChek la propiedad de Nicómaco; es decir, que para todo número natural n, el término n-ésimo de (sumasParciales [1,3..]) es el cubo de n.

Soluciones

Números malvados y odiosos

Un número malvado es un número natural cuya expresión en base 2 (binaria) contiene un número par de unos.

Un número odioso es un número natural cuya expresión en base 2 (binaria) contiene un número impar de unos.

Podemos representar los números malvados y odiosos mediante el siguiente tipo de dato

Definir la función

tal que (malvadoOdioso n) devuelve el tipo de número que es n. Por ejemplo,

Nota: Este ejercicio ha sido propuesto por Ángel Ruiz Campos.

Soluciones