Camino de máxima suma en una matriz

Los caminos desde el extremo superior izquierdo (posición (1,1)) hasta el extremo inferior derecho (posición (3,4)) en la matriz

moviéndose en cada paso una casilla hacia abajo o hacia la derecha, son los siguientes:

Las sumas de los caminos son 32, 41, 36, 40, 40, 35, 39, 34, 38 y 37, respectivamente. El camino de máxima suma es el segundo (1, 7, 12, 8, 4, 9) que tiene una suma de 41.

Definir la función

tal que (caminoMaxSuma m) es un camino de máxima suma en la matriz m desde el extremo superior izquierdo hasta el extremo inferior derecho, moviéndose en cada paso una casilla hacia abajo o hacia la derecha. Por ejemplo,

Nota: Se recomienda usar programación dinámica.

Soluciones

Máximo de las sumas de los caminos en una matriz

Los caminos desde el extremo superior izquierdo (posición (1,1)) hasta el extremo inferior derecho (posición (3,4)) en la matriz

moviéndose en cada paso una casilla hacia abajo o hacia la derecha, son los siguientes:

Las sumas de los caminos son 32, 41, 36, 40, 40, 35, 39, 34, 38 y 37, respectivamente. El máximo de las suma de los caminos es 41.

Definir la función

tal que (maximaSuma m) es el máximo de las sumas de los caminos en la matriz m desde el extremo superior izquierdo hasta el extremo inferior derecho, moviéndose en cada paso una casilla hacia abajo o hacia la derecha. Por ejemplo,

Nota: Se recomienda usar programación dinámica.

Soluciones

Caminos en una matriz

Los caminos desde el extremo superior izquierdo (posición (1,1)) hasta el extremo inferior derecho (posición (3,4)) en la matriz

moviéndose en cada paso una casilla hacia abajo o hacia la derecha, son los siguientes:

Definir la función

tal que (caminos m) es la lista de los caminos en la matriz m desde el extremo superior izquierdo hasta el extremo inferior derecho, moviéndose en cada paso una casilla hacia abajo o hacia la derecha. Por ejemplo,

Nota: Se recomienda usar programación dinámica.

Soluciones

Máxima longitud de sublistas crecientes

Definir la función

tal que (longitudMayorSublistaCreciente xs) es la el máximo de las longitudes de las sublistas crecientes de xs. Por ejemplo,

Nota: Se puede usar programación dinámica para aumentar la eficiencia.

Soluciones

La sucesión de Sylvester

La sucesión de Sylvester es la sucesión que comienza en 2 y sus restantes términos se obtienen multiplicando los anteriores y sumándole 1.

Definir las funciones

tales que

  • (sylvester n) es el n-ésimo término de la sucesión de Sylvester. Por ejemplo,

  • (graficaSylvester d n) dibuja la gráfica de los d últimos dígitos de los n primeros términos de la sucesión de Sylvester. Por ejemplo,
    • (graficaSylvester 3 30) dibuja
      La_sucesion_de_Sylvester_(3,30)
    • (graficaSylvester 4 30) dibuja
      La_sucesion_de_Sylvester_(4,30)
    • (graficaSylvester 5 30) dibuja
      La_sucesion_de_Sylvester_(5,30)

Nota: Se puede usar programación dinámica para aumentar la eficiencia.

Soluciones

Conjuntos de primos emparejables

Un conjunto de primos emparejables es un conjunto S de números primos tales que al concatenar cualquier par de elementos de S se obtiene un número primo. Por ejemplo, {3, 7, 109, 673} es un conjunto de primos emparejables ya que sus elementos son primos y las concatenaciones de sus parejas son 37, 3109, 3673, 73, 7109, 7673, 1093, 1097, 109673, 6733, 6737 y 673109 son primos.

Definir la función

tal que (emparejables n m) es el conjunto de los conjuntos emparejables de n elementos menores que n. Por ejemplo,

Combinaciones divisibles

Definir la función

tal que (tieneCombinacionDivisible xs m) se verifica si existe alguna forma de combinar todos los elementos de la lista (con las operaciones suma o resta) de forma que el resultado sea divisible por m. Por ejemplo,

En el primer ejemplo, 1 – 2 + 3 + 4 + 6 = 12 es una combinación divisible por 4. En el segundo ejemplo, las combinaciones de [1,3,9] son

y ninguna de las 4 es divisible por 2.

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Hojas con caminos no decrecientes

Los árboles se pueden representar mediante el siguiente tipo de datos

Por ejemplo, los árboles

se representan por

Definir la función

tal que (hojasEnNoDecreciente a) es el conjunto de las hojas de a que se encuentran en alguna rama no decreciente. Por ejemplo,

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Menor no expresable como suma

Definir la función

tal que (menorNoSuma xs) es el menor número que no se puede escribir como suma de un subconjunto de xs, donde se supone que xs es un conjunto de números enteros positivos. Por ejemplo,

Comprobar con QuickCheck que para todo n,

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Orden de divisibilidad

El orden de divisibilidad de un número x es el mayor n tal que para todo i menor o igual que n, los i primeros dígitos de n es divisible por i. Por ejemplo, el orden de divisibilidad de 74156 es 3 porque

Definir la función

tal que (ordenDeDivisibilidad x) es el orden de divisibilidad de x. Por ejemplo,

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Cálculo de pi mediante los métodos de Gregory-Leibniz y de Beeler

La fórmula de Gregory-Leibniz para calcular pi es
Calculo_de_pi_mediante_los_metodos_de_Gregory-Leibniz_y_de_Beeler_1
y la de Beeler es
Calculo_de_pi_mediante_los_metodos_de_Gregory-Leibniz_y_de_Beeler_2

Definir las funciones

tales que

  • (aproximaPiGL n) es la aproximación de pi con los primeros n términos de la fórmula de Gregory-Leibniz. Por ejemplo,

  • (aproximaPiBeeler n) es la aproximación de pi con los primeros n términos de la fórmula de Beeler. Por ejemplo,

  • (graficas xs) dibuja la gráfica de las k-ésimas aproximaciones de pi, donde k toma los valores de la lista xs, con las fórmulas de Gregory-Leibniz y de Beeler. Por ejemplo, (graficas [1..25]) dibuja
    Calculo_de_pi_mediante_los_metodos_de_Gregory-Leibniz_y_de_Beeler_3
    donde la línea morada corresponde a la aproximación de Gregory-Leibniz y la verde a la de Beeler.

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Suma de intervalos

Los intervalos se pueden representar por pares de enteros (a,b) con a < b. Los elementos del intervalo (2,5) son 2, 3, 4 y 5; por tanto, su longitud es 4. Para calcular la suma de los longitudes de una lista de intervalos hay que tener en cuenta que si hay intervalos superpuestos sus elementos deben de contarse sólo una vez. Por ejemplo, la suma de los intervalos de [(1,4),(7,10),(3,5)] es 7 ya que, como los intervalos (1,4) y (3,5) se solapan, los podemos ver como el intervalo (1,5) que tiene una longitud de 4.

Definir la función

tal que (sumaIntervalos xs) es la suma de las longitudes de los intervalos de xs contando los superpuestos sólo una vez. Por ejemplo,

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Pensamiento

«Si la gente no cree que las matemáticas son simples, es sólo porque no se dan cuenta de lo complicada que es la vida.»

John von Neumann.

El sesgo de Chebyshev

Un número primo distinto de 2 tiene la forma 4k + 1 o 4k + 3. Chebyshev notó en 1853 que la mayoría de las veces hay más números primos de la forma 4k + 3 que números primos de la forma 4k + 1 menores que un número dado. Esto se llama el sesgo de Chebyshev.

Definir las funciones

tales que

  • distribucionPrimosModulo4 es la lista de las ternas (p,a,b) tales que p es un números primo, a es la cantidad de primos menores o iguales que p congruentes con 1 módulo 4 y b es la cantidad de primos menores o iguales que p congruentes con 3 módulo 4. Por ejemplo,

  • empatesRestosModulo4 es la lista de los primos p tales que la cantidad de primos menores o iguales que p congruentes con 1 módulo 4 es igual a la cantidad de primos menores o iguales que p congruentes con 3 módulo 4. Por ejemplo,

  • mayoria1RestosModulo4 es la lista de los primos p tales que la cantidad de primos menores o iguales que p congruentes con 1 módulo 4 es mayor que la cantidad de primos menores o iguales que p congruentes con 3 módulo 4. Por ejemplo,

  • (graficaChebyshev n) dibuja la gráfica de los puntos (p,b-a) donde p es uno de los n primeros primos impares, a es la cantidad de primos menores o iguales que p congruentes con 1 módulo 4 y b es la cantidad de primos menores o iguales que p congruentes con 3 módulo 4. Por ejemplo, (graficaChebyshev 5000) dibuja la figura

Soluciones

[schedule expon=’2020-03-30′ expat=»06:00″]

  • Las soluciones se pueden escribir en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Pensamiento

«El valor de un problema no es tanto el de encontrar la respuesta como el de las ideas e intentos que obliga su resolución.»

Israel Nathan Herstein.

[/schedule]

[schedule on=’2020-03-30′ at=»06:00″]

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

[/schedule]

Primos magnánimos

Un número magnánimo es un número tal que las sumas obtenidas insertando un «+» entre sus dígitos en cualquier posición son números primos. Por ejemplo, 4001 es un número magnánimo porque los números 4+001=5, 40+01=41 y 400+1=401 son primos.

Definir las funciones

tales que

  • (esMagnanimo n) se verifica si n es un número magnánimo. Por ejemplo,

  • primosMagnanimos es la lista de los números primos magnánimos. Por ejemplo,

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Pensamiento

«Existe una distinción entre lo que se puede llamar un problema y lo que puede considerar un ejercicio. Este último sirve para entrenar al en alguna técnica o procedimiento, y requiere poco o ningún original. A diferencia de un ejercicio, un problema, si es apropiado para nivel, debe requerir pensamiento por parte del estudiante. Es imposible exagerar la importancia de los problemas en las matemáticas. Es por medio de los problemas que las matemáticas se desarrollan y se levantan por sí mismas. Cada nuevo descubrimiento en matemáticas es el resultado de un intento de resolver algún problema.»

Howard Eves.

Cálculo de pi mediante el método de Newton

El método de Newton para el cálculo de pi se basa en la relación
Calculo_de_pi_mediante_el_metodo_de_Newton_1
y en el desarrollo del arco seno
Calculo_de_pi_mediante_el_metodo_de_Newton_2
de donde se obtiene la fórmula
Calculo_de_pi_mediante_el_metodo_de_Newton_3

La primeras aproximaciones son

Definir las funciones

tales que

  • (aproximacionPi n) es la n-ésima aproximación de pi con la fórmula de Newton. Por ejemplo,

  • (grafica xs) dibuja la gráfica de las k-ésimas aproximaciones de pi donde k toma los valores de la lista xs. Por ejemplo, (grafica [1..30]) dibuja
    Calculo_de_pi_mediante_el_metodo_de_Newton_4

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Pensamiento

«Mi trabajo siempre trató de unir lo verdadero con lo bello; pero cuando tuve que elegir uno u otro, generalmente elegí lo bello.»

Hermann Weyl.

División de cadenas

Definir la función

tal que (division cs) es la lista de las palabras formadas por dos elementos consecutivos de cs y, en el caso de que la longitud de cs sea impar, el último elemento de la última palabra es el carácter de subrayado. Por ejemplo,

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Pensamiento

«Las matemáticas tienen un triple objetivo. Debe proporcionar un instrumento para el estudio de la naturaleza. Pero esto no es todo: tiene un objetivo filosófico y, me atrevo a decir, un objetivo estético.»

Henri Poincaré.

Primero no consecutivo

Definir la función

tal que (primeroNoConsecutivo xs) es el primer elemento de la lista xs que no es igual al siguiente de su elemento anterior en xs o Nothing si tal elemento no existe. Por ejemplo

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Pensamiento

«La única enseñanza que un profesor puede dar, en mi opinión, es la de pensar delante de sus alumnos.»

Henri Lebesgue.

Producto de Fibonaccis consecutivos

Los números de Fibonacci son los números F(n) de la siguiente sucesión

que comienza con 0 y 1 y los siguientes términos son las sumas de los dos anteriores.

Un número x es el producto de dos números de Fibonacci consecutivos si existe un n tal que

y su prueba es (F(n),F(n+1),True). Por ejemplo, 714 es el producto de dos números de Fibonacci consecutivos ya que

Su prueba es (21, 34, True).

Un número x no es el producto de dos números de Fibonacci consecutivos si no existe un n tal que

y su prueba es (F(m),F(m+1),False) donde m es el menor número tal que

Por ejemplo, 800 no es el producto de dos números de Fibonacci consecutivos, ya que

Su prueba es (34, 55, False),

Definir la función

tal que (productoFib x) es la prueba de que es, o no es, el producto de dos números de Fibonacci consecutivos. Por ejemplo,

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Pensamiento

«El placer que obtenemos de la música proviene de contar, pero contando inconscientemente. La música no es más que aritmética inconsciente.»

Gottfried Wilhelm Leibniz.

Ordenación pendular

La ordenación pendular de una lista xs es la lista obtenida organizando sus elementos de manera similar al movimiento de ida y vuelta de un péndulo; es decir,

  • El menor elemento de xs se coloca en el centro de la lista.
  • El siguiente elemento se coloca a la derecha del menor.
  • El siguiente elemento se coloca a la izquierda del menor y así sucesivamente, de una manera similar a la de un péndulo.

Por ejemplo, la ordenación pendular de [6,6,8,5,10] es [10,6,5,6,8].

Definir la función

tal que (pendulo xs) es la ordenación pendular de xs. Por ejemplo,

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Pensamiento

«La mejor obra del matemático es el arte, un arte altamente perfecto, tan audaz como los más secretos sueños de la imaginación, claro y límpido. El genio matemático y el genio artístico se tocan mutuamente.»

Gösta Mittag-Leffler.

Avistamientos de la pelota

Un niño está jugando con una pelota en el noveno piso de un edificio alto. La altura de este piso, h, es conocida. Deja caer la pelota por la ventana. La pelota rebota una r-ésima parte de su altura (por ejemplo, dos tercios de su altura). Su madre mira por una ventana a w metros del suelo (por ejemplo, a 1.5 metros). ¿Cuántas veces verá la madre a la pelota pasar frente a su ventana incluyendo cuando está cayendo y rebotando?

Se deben cumplir tres condiciones para que el experimento sea válido:

  • La altura «h» debe ser mayor que 0
  • El rebote «r» debe ser mayor que 0 y menor que 1
  • La altura de la ventana debe ser mayor que 0 y menor que h.

Definir la función

tal que (numeroAvistamientos h r v) es el número de avistamientos de la pelota si se cumplen las tres condiciones anteriores y es -1 en caso contrario. Por ejemplo,

Soluciones