Primos equidistantes

Definir la función

tal que (primosEquidistantes k) es la lista de los pares de primos cuya diferencia es k. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

Anagramas

Una palabra es una anagrama de otra si se puede obtener permutando sus letras. Por ejemplo, «mora» y «roma» son anagramas de «amor».

Definir la función

tal que (anagramas x ys) es la lista de los elementos de ys que son anagramas de x. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

La bandera tricolor

El problema de la bandera tricolor consiste en lo siguiente: Dada un lista de objetos xs que pueden ser rojos, amarillos o morados, se pide devolver una lista ys que contiene los elementos de xs, primero los rojos, luego los amarillos y por último los morados.

Definir el tipo de dato Color para representar los colores con los constructores R, A y M correspondientes al rojo, azul y morado y la función

tal que (banderaTricolor xs) es la bandera tricolor formada con los elementos de xs. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

Iguales al siguiente

Definir la función

tal que (igualesAlSiguiente xs) es la lista de los elementos de xs que son iguales a su siguiente. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

Primos consecutivos con media capicúa

Definir la lista

formada por las ternas (x,y,z) tales que x e y son primos consecutivos cuya media, z, es capicúa. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

Mastermind

El Mastermind es un juego que consiste en deducir un código numérico formado por una lista de números. Cada vez que se empieza una partida, el programa debe elegir un código, que será lo que el jugador debe adivinar en la menor cantidad de intentos posibles. Cada intento consiste en una propuesta de un código posible que propone el jugador, y una respuesta del programa. Las respuestas le darán pistas al jugador para que pueda deducir el código.

Estas pistas indican lo cerca que estuvo el número propuesto de solución a través de dos valores: la cantidad de aciertos es la cantidad de dígitos que propuso el jugador que también están en el código en la misma posición. La cantidad de coincidencias es la cantidad de dígitos que propuso el jugador que también están en el código pero en una posición distinta.

Por ejemplo, si el código que eligió el programa es el [2,6,0,7] el jugador propone el [1,4,0,6], el programa le debe responder acierto (el 0, que está en el código original en el mismo lugar, tercero), y una coincidencia (el 6, que también está en el original, pero en la segunda posición, no en el cuarto como fue propuesto). Si el jugador hubiera propuesto el [3,5,9,1], habría obtenido como respuesta ningún acierto y ninguna coincidencia, ya que no hay números en común con el código original. Si se obtienen cuatro aciertos es porque el jugador adivinó el código y ganó el juego.

Definir la función

tal que (mastermind xs ys) es el par formado por los números de aciertos y de coincidencias entre xs e ys. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

Determinación de los elementos minimales

Definir la función

tal que (minimales xss) es la lista de los elementos de xss que no están contenidos en otros elementos de xss. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

Máxima suma de caminos en un triángulo

Los triángulos se pueden representar mediante listas de listas. Por ejemplo, el triángulo

se reperesenta por

Definir la función

tal que (maximaSuma xss) es el máximo de las sumas de los elementos de los caminos en el triángulo xss donde los caminos comienzan en el elemento de la primera fila, en cada paso se mueve a uno de sus dos elementos adyacentes en la fila siguiente y terminan en la última fila. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

Caminos en un triángulo

Los triángulos se pueden representar mediante listas de listas. Por ejemplo, el triángulo

se representa por

Definir la función

tal que (caminos xss) es la lista de los caminos en el triángulo xss donde los caminos comienzan en el elemento de la primera fila, en cada paso se mueve a uno de sus dos elementos adyacentes en la fila siguiente y terminan en la última fila. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

Mayor órbita de la sucesión de Collatz

Se considera la siguiente operación, aplicable a cualquier número entero positivo:

  • Si el número es par, se divide entre 2.
  • Si el número es impar, se multiplica por 3 y se suma 1.

Dado un número cualquiera, podemos calcular su órbita; es decir, las imágenes sucesivas al iterar la función. Por ejemplo, la órbita de 13 es

Si observamos este ejemplo, la órbita de 13 es periódica, es decir, se repite indefinidamente a partir de un momento dado). La conjetura de Collatz dice que siempre alcanzaremos el 1 para cualquier número con el que comencemos. Por ejemplo,

  • Empezando en n = 6 se obtiene 6, 3, 10, 5, 16, 8, 4, 2, 1.
  • Empezando en n = 11 se obtiene: 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1.
  • Empezando en n = 27, la sucesión tiene 112 pasos, llegando hasta 9232 antes de descender a 1: 27, 82, 41, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242, 121, 364, 182, 91, 274, 137, 412, 206, 103, 310, 155, 466, 233, 700, 350, 175, 526, 263, 790, 395, 1186, 593, 1780, 890, 445, 1336, 668, 334, 167, 502, 251, 754, 377, 1132, 566, 283, 850, 425, 1276, 638, 319, 958, 479, 1438, 719, 2158, 1079, 3238, 1619, 4858, 2429, 7288, 3644, 1822, 911, 2734, 1367, 4102, 2051, 6154, 3077, 9232, 4616, 2308, 1154, 577, 1732, 866, 433, 1300, 650, 325, 976, 488, 244, 122, 61, 184, 92, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1.

Definir la función

tal que (mayoresGeneradores n) es la lista de los números menores o iguales que n cuyas órbitas de Collatz son las de mayor longitud. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

Exponente en la factorización

Definir la función

tal que (exponente x n) es el exponente de x en la factorizacón prima de n (se supone que x > 1 y n > 0). Por ejemplo,

Soluciones

El código se encuentra en GitHub.

Número de ocurrencias de elementos

Definir la función

tal que (ocurrencias xs) es el conjunto de los elementos de xs junto con sus números de ocurrencias. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

Reconocimiento de potencias de 4

Definir la función

tal que (esPotenciaDe4 n) se verifica si n es una potencia de 4. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

Producto de los elementos de la diagonal principal

Las matrices se pueden representar como lista de listas de la misma longitud, donde cada uno de sus elementos representa una fila de la matriz.

Definir la función

tal que (productoDiagonalPrincipal xss) es el producto de los elementos de la diagonal principal de la matriz cuadrada xss. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

Reiteración de suma de consecutivos

La reiteración de la suma de los elementos consecutivos de la lista [1,5,3] es 14 como se explica en el siguiente diagrama

y la de la lista [1,5,3,4] es 29 como se explica en el siguiente diagrama

Definir la función

tal que (sumaReiterada xs) es la suma reiterada de los elementos consecutivos de la lista no vacía xs. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

Duplicación de cada elemento

Definir la función

tal que (duplicaElementos xs) es la lista obtenida duplicando cada elemento de xs. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

Sistema factorádico de numeración

El sistema factorádico es un sistema numérico basado en factoriales en el que el n-ésimo dígito, empezando desde la derecha, debe ser multiplicado por n! Por ejemplo, el número «341010» en el sistema factorádico es 463 en el sistema decimal ya que

En este sistema numérico, el dígito de más a la derecha es siempre 0, el segundo 0 o 1, el tercero 0,1 o 2 y así sucesivamente.

Con los dígitos del 0 al 9 el mayor número que podemos codificar es el 10!-1 = 3628799. En cambio, si lo ampliamos con las letras A a Z podemos codificar hasta 36!-1 = 37199332678990121746799944815083519999999910.

Definir las funciones

tales que

  • (factoradicoAdecimal cs) es el número decimal correspondiente al número factorádico cs. Por ejemplo,

  • (decimalAfactoradico n) es el número factorádico correpondiente al número decimal n. Por ejemplo,

Comprobar con QuickCheck que, para cualquier entero positivo n,

Soluciones

El código se encuentra en GitHub.

Cuadrado más cercano

Definir la función

tal que (cuadradoCercano n) es el número cuadrado más cercano a n, donde n es un entero positivo. Por ejemplo,

Soluciones

El código se encuentra en GitHub

La elaboración de las soluciones se muestra en el siguiente vídeo:

Caminos reducidos

Un camino es una sucesión de pasos en una de las cuatros direcciones Norte, Sur, Este, Oeste. Ir en una dirección y a continuación en la opuesta es un esfuerzo que se puede reducir, Por ejemplo, el camino [Norte,Sur,Este,Sur] se puede reducir a [Este,Sur].

Un camino se dice que es reducido si no tiene dos pasos consecutivos en direcciones opuesta. Por ejemplo, [Este,Sur] es reducido y [Norte,Sur,Este,Sur] no lo es.

En Haskell, las direcciones y los caminos se pueden definir por

Definir la función

tal que (reducido ds) es el camino reducido equivalente al camino ds. Por ejemplo,

Nótese que en el penúltimo ejemplo las reducciones son

Soluciones

Subexpresiones aritméticas

Las expresiones aritméticas pueden representarse usando el siguiente tipo de datos

Por ejemplo, la expresión 2*(3+7) se representa por

Definir la función

tal que (subexpresiones e) es el conjunto de las subexpresiones de e. Por ejemplo,

Soluciones

Número como suma de sus dígitos

El número 23 se puede escribir de 4 formas como suma de sus dígitos

La de menor número de sumando es la última, que tiene 8 sumandos.

Definir las funciones

tales que

  • (minimoSumandosDigitos n) es el menor número de dígitos de n cuya suma es n. Por ejemplo,

  • (graficaMinimoSumandosDigitos n) dibuja la gráfica de (minimoSumandosDigitos k) par los k primeros números naturales. Por ejemplo, (graficaMinimoSumandosDigitos 300) dibuja

Soluciones

Cambio con el menor número de monedas

El problema del cambio con el menor número de monedas consiste en, dada una lista ms de tipos de monedas (con infinitas monedas de cada tipo) y una cantidad objetivo x, calcular el menor número de monedas de ms cuya suma es x. Por ejemplo, con monedas de 1, 3 y 4 céntimos se puede obtener 6 céntimos de 4 formas

El menor número de monedas que se necesita es 2. En cambio, con monedas de 2, 5 y 10 es imposible obtener 3.

Definir

tal que (monedas ms x) es el menor número de monedas de ms cuya suma es x, si es posible obtener dicha suma y es Nothing en caso contrario. Por ejemplo,

Soluciones

La sucesión ECG

La sucesión ECG estás definida por a(1) = 1, a(2) = 2 y, para n >= 3, a(n) es el menor natural que aún no está en la sucesión tal que a(n) tiene algún divisor común con a(n-1).

Los primeros términos de la sucesión son 1, 2, 4, 6, 3, 9, 12, 8, 10, 5, 15, …

Al dibujar su gráfica, se parece a la de los electrocardiogramas (abreviadamente, ECG). Por ello, la sucesión se conoce como la sucesión ECG.

Definir las funciones

tales que

  • sucECG es la lista de los términos de la sucesión ECG. Por ejemplo,

  • (graficaSucECG n) dibuja la gráfica de los n primeros términos de la sucesión ECG. Por ejemplo, (graficaSucECG 160) dibuja

Soluciones

Caminos en un grafo

Definir las funciones

tales que

  • (grafo as) es el grafo no dirigido definido cuyas aristas son as. Por ejemplo,

  • (caminos g a b) es la lista los caminos en el grafo g desde a hasta b sin pasar dos veces por el mismo nodo. Por ejemplo,

Soluciones

Sin ceros consecutivos

Definir la función

tal que (sinDobleCero n) es la lista de las listas de longitud n formadas por el 0 y el 1 tales que no contiene dos ceros consecutivos. Por ejemplo,

Soluciones

Las sucesiones de Loomis

La sucesión de Loomis generada por un número entero positivo x es la sucesión cuyos términos se definen por

  • f(0) es x
  • f(n) es la suma de f(n-1) y el producto de los dígitos no nulos de f(n-1)

Los primeros términos de las primeras sucesiones de Loomis son

  • Generada por 1: 1, 2, 4, 8, 16, 22, 26, 38, 62, 74, 102, 104, 108, 116, 122, …
  • Generada por 2: 2, 4, 8, 16, 22, 26, 38, 62, 74, 102, 104, 108, 116, 122, 126, …
  • Generada por 3: 3, 6, 12, 14, 18, 26, 38, 62, 74, 102, 104, 108, 116, 122, 126, …
  • Generada por 4: 4, 8, 16, 22, 26, 38, 62, 74, 102, 104, 108, 116, 122, 126, 138, …
  • Generada por 5: 5, 10, 11, 12, 14, 18, 26, 38, 62, 74, 102, 104, 108, 116, 122, …

Se observa que a partir de un término todas coinciden con la generada por 1. Dicho término se llama el punto de convergencia. Por ejemplo,

  • la generada por 2 converge a 2
  • la generada por 3 converge a 26
  • la generada por 4 converge a 4
  • la generada por 5 converge a 26

Definir las siguientes funciones

tales que

  • (sucLoomis x) es la sucesión de Loomis generada por x. Por ejemplo,

  • (convergencia x) es el término de convergencia de la sucesioń de Loomis generada por x xon la geerada por 1. Por ejemplo,

  • (graficaConvergencia xs) dibuja la gráfica de los términos de convergencia de las sucesiones de Loomis generadas por los elementos de xs. Por ejemplo, (graficaConvergencia ([1..50]) dibuja
    Las_sucesiones_de_Loomis_1
    y graficaConvergencia ([1..148] \ [63,81,89,137]) dibuja
    Las_sucesiones_de_Loomis_2

Soluciones

Espacio de estados del problema de las N reinas

El problema de las N reinas consiste en colocar N reinas en tablero rectangular de dimensiones N por N de forma que no se encuentren más de una en la misma línea: horizontal, vertical o diagonal. Por ejemplo, una solución para el problema de las 4 reinas es

Los estados del problema de las N reinas son los tableros con las reinas colocadas. Inicialmente el tablero está vacío y, en cda paso se coloca una reina en la primera columna en la que aún no hay ninguna reina.

Cada estado se representa por una lista de números que indican las filas donde se han colocado las reinas. Por ejemplo, el tablero anterior se representa por [2,4,1,3].

Usando la librería de árboles Data.Tree, definir las funciones

tales que

  • (arbolReinas n) es el árbol de estados para el problema de las n reinas. Por ejemplo,

  • (nEstados n) es el número de estados en el problema de las n reinas. Por ejemplo,

  • (soluciones n) es la lista de estados que son soluciones del problema de las n reinas. Por ejemplo,

  • (nSoluciones n) es el número de soluciones del problema de las n reinas. Por ejemplo,

Soluciones

Números de Perrin

Los números de Perrin se definen por la elación de recurrencia

con los valores iniciales

Definir la sucesión

cuyos elementos son los números de Perrin. Por ejemplo,

Comprobar con QuickCheck si se verifica la siguiente propiedad: para todo entero n > 1, el n-ésimo término de la sucesión de Perrin es divisible por n si y sólo si n es primo.

Soluciones

Cadenas de divisores

Una cadena de divisores de un número n es una lista donde cada elemento es un divisor de su siguiente elemento en la lista. Por ejemplo, las cadenas de divisores de 12 son [2,4,12], [2,6,12], [2,12], [3,6,12], [3,12], [4,12], [6,12] y [12].

Definir la función

tal que (cadenasDivisores n) es la lista de las cadenas de divisores de n. Por ejemplo,

Soluciones

Sucesión fractal

La sucesión fractal

está construida de la siguiente forma:

  • los términos pares forman la sucesión de los números naturales

  • los términos impares forman la misma sucesión original

Definir las funciones

tales que

  • sucFractal es la lista de los términos de la sucesión fractal. Por ejemplo,

  • (sumaSucFractal n) es la suma de los n primeros términos de la sucesión fractal. Por ejemplo,

Soluciones