Números somirp

Un número omirp es un número primo que forma un primo distinto al invertir el orden de sus dígitos.

Definir las funciones

tales que

  • (esOmirp n) se verifica si n es un número omirp. Por ejemplo,

  • omirps es la lista de los números omirps. Por ejemplo,

  • (nOmirpsIntermedios n) es la cantidad de números omirps entre el n-ésimo número omirp y el obtenido al invertir el orden de sus dígitos. Por ejemplo,

Nota: Este ejercicio ha sido propuesto por Ángel Ruiz Campos.

Soluciones

De hexadecimal a decimal

El sistema hexadecimal es el sistema de numeración posicional que tiene como base el 16.

En principio, dado que el sistema usual de numeración es de base decimal y, por ello, sólo se dispone de diez dígitos, se adoptó la convención de usar las seis primeras letras del alfabeto latino para suplir los dígitos que nos faltan. El conjunto de símbolos es el siguiente: {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}. En ocasiones se emplean letras minúsculas en lugar de mayúsculas. Se debe notar que A = 10, B = 11, C = 12, D = 13, E = 14 y F = 15.

Como en cualquier sistema de numeración posicional, el valor numérico de cada dígito es alterado dependiendo de su posición en la cadena de dígitos, quedando multiplicado por una cierta potencia de la base del sistema, que en este caso es 16. Por ejemplo, el valor decimal del número hexadecimal 3E0A es

Definir la función

tal que (hexAdec cs) es el valor decimal del número hexadecimal representado meiante la cadena cs. Por ejemplo,

Soluciones

Rotaciones divisibles por 8

Las rotaciones de 928160 son 928160, 281609, 816092, 160928, 609281 y 92816 de las que 3 son divisibles por 8 (928160, 160928 y 92816).

Definir la función

tal que (nRotacionesDivisiblesPor8 x) es el número de rotaciones de x divisibles por 8. Por ejemplo,

Soluciones

Máximo de las rotaciones restringidas

Rotar un número a la iquierda significa pasar su primer dígito al final. Por ejemplo, rotando a la izquierda el 56789 se obtiene 67895.

Las rotaciones restringidas del número 56789 se obtienen como se indica a continución:

  • Se inicia con el propio número: 56789
  • El anterior se rota a la izquierda y se obtiene el 67895.
  • Del anterior se fija el primer dígito y se rota a la iquierda los otros. Se obtiene 68957.
  • Del anterior se fijan los 2 primeros dígito y se rota a la iquierda los otros. Se obtiene 68579.
  • Del anterior se fijan los 3 primeros dígito y se rota a la iquierda los otros. Se obtiene 68597.

El proceso ha terminado ya que conservando los cuatro primeros queda sólo un dígito que al girar es él mismo. Por tanto, la sucesión de las rotaciones restringidas de 56789 es

y su mayor elemento es 68957.

Definir la función

tal que (maxRotaciones n) es el máximo de las rotaciones restringidas del número n. Por ejemplo,

Soluciones

Menor x tal que los x múltiplos de n contienen todos los dígitos

Definir la función

tal que (menorX n) es el menor x tal que entre los x primeros múltiplos de n (es decir, entre n, 2×n, 3×n, … y x×n) contienen todos los dígitos al menos una vez. Por ejemplo, (menorX 92) es 6 ya que

Otros ejemplos

Soluciones

Sucesión contadora

Definir las siguientes funciones

tales que

  • (numeroContado n) es el número obtenido al contar las repeticiones de cada una de las cifras de n. Por ejemplo,

  • (contadora n) es la sucesión cuyo primer elemento es n y los restantes se obtienen contando el número anterior de la sucesión. Por ejemplo,

  • (lugarPuntoFijoContadora n k) es el menor i <= k tal que son iguales los elementos en las posiciones i e i+1 de la sucesión contadora que cominza con n. Por ejemplo,

Nota: Este ejercicio ha sido propuesto por Ángel Ruiz.

Soluciones

Cadenas de sumas de factoriales de los dígitos

Dado un número n se considera la sucesión cuyo primer término es n y los restantes se obtienen sumando los factoriales de los dígitos del anterior. Por ejemplo, la sucesión que empieza en 69 es

La cadena correspondiente a un número n son los términos de la sucesión que empieza en n hasta la primera repetición de un elemento en la sucesión. Por ejemplo, la cadena de 69 es

Consta de una parte no periódica ([69,363600]) y de una periódica ([1454,169,363601]).

Definir las funciones

tales que

  • (cadena n es la cadena correspondiente al número n. Por ejemplo,

  • (periodo n) es la parte periódica de la cadena de n. Por ejemplo,

Soluciones

Números dígito potenciales

Un número entero x es dígito potencial de orden n si x es la suma de los dígitos de x elevados a n. Por ejemplo,

  • 153 es un dígito potencial de orden 3 ya que 153 = 1^3+5^3+3^3
  • 4150 es un dígito potencial de orden 5 ya que 4150 = 4^5+1^5+5^5+0^5

Un número x es dígito auto potencial si es un dígito potencial de orden n, donde n es el número de dígitos de n. Por ejemplo, 153 es un número dígito auto potencial.

Definir las funciones

tales que

  • (digitosPotencialesOrden n) es la lista de los números dígito potenciales de orden n. Por ejemplo,

  • digitosAutoPotenciales es la lista de los números dígito auto potenciales. Por ejemplo,

Soluciones

Mayor número equidigital

Definir la función

tal que (mayorEquidigital x) es el mayor número que se puede contruir con los dígitos de x. Por ejemplo,

Soluciones

Biparticiones de un número

Definir la función

tal que (biparticiones n) es la lista de pares de números formados por las primeras cifras de n y las restantes. Por ejemplo,

Soluciones

Subnúmeros pares

Los subnúmeros de un número x son los números que se pueden formar con dígitos de x en posiciones consecutivas. Por ejemplo, el número 254 tiene 6 subnúmeros: 2, 5, 4, 25, 54 y 254.

Definir las funciones

tales que

  • (subnumerosPares x) es la lista de los subnúmeros pares de x. Por ejemplo,

  • (nSubnumerosPares x) es la cantidad de subnúmeros pares de x. Por ejemplo,

Soluciones

Rotaciones divisibles por 4

Las rotaciones de 928160 son 928160, 281609, 816092, 160928, 609281 y 92816. De las cuales, las divisibles por 4 son 928160, 816092, 160928 y 92816.

Definir la función

tal que (nRotacionesDivisibles n) es el número de rotaciones del número n divisibles por 4. Por ejemplo,

Soluciones

Distribución de diferencias de dígitos consecutivos de pi

La distribución de las diferencias de los dígitos consecutivos para los 18 primeros dígitos de pi se calcula como sigue: los primeros 18 dígitos de pi son

Las diferencias de sus elementos consecutivos es

y la distribución de sus frecuencias en el intervalo [-9,9] es

es decir, el desde el -9 a -5 no aparecen, el -4 aparece 3 veces, el -2 aparece 2 veces y así sucesivamente.

Definir las funciones

tales que

  • (distribucionDDCpi n) es la distribución de las diferencias de los dígitos consecutivos para los primeros n dígitos de pi. Por ejemplo,

  • (graficas ns f) dibuja en el fichero f las gráficas de las distribuciones de las diferencias de los dígitos consecutivos para los primeros n dígitos de pi, para n en ns. Por ejemplo, al evaluar (graficas [100,250..4000] «distribucionDDCpi.png» se escribe en el fichero «distribucionDDCpi.png» la siguiente gráfica
    Distribucion_de_diferencias_de_digitos_consecutivos_de_pi

Nota: Se puede usar la librería Data.Number.CReal.

Soluciones

Contando en la arena

El problema de ayer de ¡Acepta el reto! fue Contando en la arena cuyo enunciado es el siguiente:

Es ampliamente conocido que escribimos los números utilizando base 10, en la que expresamos las cantidades utilizando 10 dígitos distintos (0…9). El valor de cada uno de ellos depende de la posición que ocupe dentro del número, pues cada dígito se multiplica por una potencia de 10 distinta según cuál sea esa posición.

La descomposición, por ejemplo, del número 1.234 es: 1.234 = 1×10^3 + 2×10^2 + 3×10^1 + 4×10^0

Otra base muy conocida es la base 2 al ser la utilizada por los dispositivos electrónicos. En ella sólo hay dos dígitos distintos (0 y 1), que se ven multiplicados por potencias de 2.

Mucho antes de que llegaran la base 2, la base 10 e incluso los números romanos, los primeros seres humanos contaban haciendo surcos en la arena, muescas en un trozo de madera o colocando palos en línea. Estaban, sin saberlo, usando base 1. En ella sólo hay un símbolo y cada dígito es multiplicado por una potencia de 1. Dado que 1^n = 1 el resultado es que todos los dígitos tienen el mismo peso.

Definir la función

tal que al evaluar (transformaAbase1 f1 f2) lee el contenido del fichero f1 (que estará compuesto por distintos números mayores que 0, cada uno en una línea) y escribe en el fichero f2 una línea con la representación en base 1 de cada uno de los números de f1 excepto el 0 final. Por ejemplo, si el contenido de «Entrada.txt» es

al evaluar (transformaAbase1 «Entrada.txt» «Salida.txt») el contenido de «Salida.txt» debe de ser

Soluciones

Máximo común divisor de x e y veces n

Definir las funciones

tales que

  • (repite x n) es el número obtenido repitiendo x veces el número n. Por ejemplo.

  • (mcdR n x y) es el máximo común divisor de los números obtenidos repitiendo x veces e y veces el número n. Por ejemplo.

Soluciones

La sucesión «Mira y di»

La sucesión «Mira y di» (en inglés, Look-and-Say) es una sucesión de números naturales en donde cada término se obtiene agrupando las cifras iguales del anterior y recitándolas. Por ejemplo, si x(0) = 1 se lee como «un uno» y por tanto x(1) = 11. Análogamente,

Definir la función

tal que (sucMiraYDi n) es la sucesión «Mira y di» cuyo primer término es n. Por ejemplo,

Independientemente del término inicial x(0) elegido (con la única salvedad del 22), la sucesión diverge y la razón entre el número de cifras de x(n) y el de x(n-1) tiende a un valor fijo que es la constante de Conway λ ≈ 1.303577269. Por ejemplo, para x(0) = 1, las razones son

Definir la función

tal que (aproximacionConway n e) es el menor k tal que la diferencia entre la constante de Conway y la razón entre el número de cifras de x(k) x(k-1) es, en valor absoluto, menor que e. Por ejemplo,

Nota: Este ejercicio ha sido propuesto por Elías Guisado.

Soluciones

Notación polaca inversa

La notación polaca inversa (en inglés, Reverse Polish Notation, o RPN), es una forma alternativa de escribir expresiones matemáticas. Por ejemplo, la expresión "20 - (4 + 3) * 2" en RPN es "20 4 3 + 2 * -".

Para evaluar una expresión en RPN, usamos una lista auxiliar (inicialmente vacía) y recorremos la expresión de izquierda a derecha. Cada vez que encontramos un número, lo añadimos a la lista auxiliar. Cuando encontramos un operador, retiramos los dos números que hay al principio de la pila, utilizamos el operador con ellos y los quitamos de la lista y le añadimos el resultado. Cuando alcancemos el final de la expresión, debemos tener un solo número en la lista auxiliar si la expresión estaba bien formada, y éste representa el resultado de la expresión. Por ejemplo, la evaluación de RPN "20 4 3 + 2 * -" es la siguiente

Definir la función

tal que (valor cs) es el valor de la expresión RPN cs. Por ejemplo,

Soluciones

La conjetura de Rodolfo

El pasado 1 de enero, Claudio Meller publicó el artículo La conjetura de Rodolfo que afirma que

Todos los números naturales se pueden números pueden expresarse como la suma de un capicúa y un capicúa especial (siendo los capicúas especiales los números que al quitarles los ceros finales son capicúas; por ejemplo, 32300, 50500 y 78987).

Definir las funciones

tales que

  • (descomposiciones x) es la lista de las descomposiciones de x como la suma de un capicúa y un capicúa especial. Por ejemplo,

  • contraejemplosConjeturaRodolfo es la lista de contraejemplos de la conjetura de Rodolfo; es decir, de los números que no pueden expresarse com la suma de un capicúa y un capicúa especial. Por ejemplo,

Soluciones

Sumas de dos capicúas

Definir las funciones

tales que

  • (sumas2Capicuas x) es la lista de las descomposiciones de x como suma de dos capicúas (con el primer sumando menor o igual que el segundo). Por ejemplo,

  • noSuma2Capicuas es la sucesión de los números que no se pueden escribir como suma de dos capicúas. Por ejemplo,

Soluciones

Sumas de tres capicúas

Definir la función

tales que (sumas3Capicuas x) es la lista de las descomposiciones de x como suma de tres capicúas (con los sumandos no decrecientes). Por ejemplo,

Comprobar con QuickCheck que todo número natural se puede escribir como suma de tres capicúas.

Soluciones

Sucesión de capicúas

Definir las funciones

tales que

  • capicuas es la sucesión de los números capicúas. Por ejemplo,

  • (posicionCapicua x) es la posición del número capicúa x en la sucesión de los capicúas. Por ejemplo,

Soluciones

Números dorados

Los dígitos del número 2375 se pueden separar en dos grupos de igual tamaño ([7,2] y [5,3]) tales que para los correspondientes números (72 y 53) se verifique que la diferencia de sus cuadrados sea el número original (es decir, 72^2 – 53^2 = 2375).

Un número x es dorado si sus dígitos se pueden separar en dos grupos de igual tamaño tales que para los correspondientes números (a y b) se verifique que la diferencia de sus cuadrados sea el número original (es decir, b^2 – a^2 = x).

Definir la función

tales que (esDorado x) se verifica si x es un número dorado. Por
ejemplo,

Soluciones

Sucesión de cuadrados reducidos

La sucesión de cuadrados de orden n definida a partir de un número x se forma iniciándola en x y, para cada término z el siguiente es el número formado por los n primeros dígitos del cuadrado de z. Por ejemplo, para n = 4 y x = 1111, el primer término de la sucesión es 1111, el segundo es 1234 (ya que 1111^2 = 1234321) y el tercero es 1522 (ya que 1234^2 = 1522756).

Definir la función

tal que (sucCuadrados n x) es la sucesión de cuadrados de orden n definida a partir de x. Por ejemplo,

Soluciones

Sin ceros finales

Definir la función

tal que (sinCerosFinales n) es el número obtenido eliminando los ceros finales de n. Por ejemplo,

Comprobar con QuickCheck que, para cualquier número entero n,

Soluciones

Representación binaria de los números de Carol

Un número de Carol es un número entero de la forma 4^n-2^{n+1}-1 o, equivalentemente, (2^n-1)^2-2. Los primeros números de Carol son -1, 7, 47, 223, 959, 3967, 16127, 65023, 261119, 1046527.

Definir las funciones

tales que

  • (carol n) es el n-ésimo número de Carol. Por ejemplo,

  • (carolBinario n) es la representación binaria del n-ésimo número de Carol. Por ejemplo,

Comprobar con QuickCheck que, para n > 2, la representación binaria del n-ésimo número de Carol es el número formado por n-2 veces el dígito 1, seguido por un 0 y a continuación n+1 veces el dígito 1.

Soluciones

Referencias

Números de Dudeney

La semana pasada, Pepe Muñoz Santonja publicó en su blog Algo más que números el artículo Números de Dudeney en la base OEIS

Un número de Dudeney es un número entero n tal que el cubo de la suma de sus dígitos es igual a n. Por ejemplo, 512 es un número de Dudeney ya que (5+1+2)^3 = 8^3 = 512.

Se puede generalizar variando el exponente: Un número de Dudeney de orden k es un número entero n tal que la potencia k-ésima de la suma de sus dígitos es igual a n. Por ejemplo, 2401 es un número de Dudeney de orden 4 ya que (2+4+0+1)^4 = 7^4 = 2401.

Definir la función

tal que (numerosDudeney k) es la lista de los números de Dudeney oe orden k. Por ejemplo,

Comprobar con QuickCheck que 19683 es el mayor número de Dudeney de orden 3.

Soluciones

Números poderosos

Un número es poderoso si es igual a la suma de sus dígitos elevados a sus respectivas posiciones. Por ejemplo, los números 89, 135 y 1306 son poderosos ya que

Definir la función

tal que (esPoderoso n) se verifica si n es poderoso. Por ejemplo,

Comprobar con QuickCheck que 12157692622039623539 es el mayor número poderoso.

Soluciones

Primos de Kamenetsky

Un número primo se dice que es un primo de Kamenetsky si al anteponerlo cualquier dígito se obtiene un número compuesto. Por ejemplo, el 5 es un primo de Kamenetsky ya que 15, 25, 35, 45, 55, 65, 75, 85 y 95 son compuestos. También lo es 149 ya que 1149, 2149, 3149, 4149, 5149, 6149, 7149, 8149 y 9149 son compuestos.

Definir la sucesión

tal que sus elementos son los números primos de Kamenetsky. Por ejemplo,

Soluciones

Referencias

Números de Harshad hereditarios

Un número de Harshad es un entero divisible entre la suma de sus dígitos. Por ejemplo, 201 es un número de Harshad porque es divisible por 3 (la suma de sus dígitos). Cuando se elimina el último dígito de 201 se obtiene 20 que también es un número de Harshad. Cuando se elimina el último dígito de 20 se obtiene 2 que también es un número de Harshad. Los números como el 201 que son de Harshad y que los números obtenidos eliminando sus últimos dígitos siguen siendo de Harshad se llaman números de Harshad hereditarios por la derecha. Definir la función

tal que (numeroHHD n) se verifica si n es un número de Harshad hereditario por la derecha. Por ejemplo,

Calcular el mayor número de Harshad hereditario por la derecha con tres dígitos.

Soluciones

Conjuntos de primos emparejables

Un conjunto de primos emparejables es un conjunto S de números primos tales que al concatenar cualquier par de elementos de S se obtiene un número primo. Por ejemplo, {3, 7, 109, 673} es un conjunto de primos emparejables ya que sus elementos son primos y las concatenaciones de sus parejas son 37, 3109, 3673, 73, 7109, 7673, 1093, 1097, 109673, 6733, 6737 y 673109 son primos.

Definir la función

tal que (emparejables n m) es el conjunto de los conjuntos emparejables de n elementos menores que n. Por ejemplo,

Soluciones