Sucesión de sumas de dos números abundantes

Un número n es abundante si la suma de los divisores propios de n es mayor que n. El primer número abundante es el 12 (cuyos divisores propios son 1, 2, 3, 4 y 6 cuya suma es 16). Por tanto, el menor número que es la suma de dos números abundantes es el 24.

Definir la sucesión

cuyos elementos son los números que se pueden escribir como suma de dos números abundantes. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

Suma de divisores

Definir la función

tal que (sumaDivisores x) es la suma de los divisores de x. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

Número de divisores

Definir la función

tal que (numeroDivisores x) es el número de divisores de x. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

Conjunto de divisores

Definir la función

tal que (divisores x) es el conjunto de divisores de x. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

Reconocimiento de potencias de 2

Definir la función

tal que (esPotenciaDeDos n) se verifica si n es una potencia de dos (suponiendo que n es mayor que 0). Por ejemplo.

Soluciones

El código se encuentra en GitHub.

Conjunto de primos relativos

Dos números enteros positivos son primos relativos si no tienen ningún factor primo en común; es decit, si 1 es su único divisor común. Por ejemplo, 6 y 35 son primos entre sí, pero 6 y 27 no lo son porque ambos son divisibles por 3.

Definir la función

tal que (primosRelativos xs) se verifica si los elementos de xs son primos relativos dos a dos. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Huecos de Aquiles

Un número de Aquiles es un número natural n que es potente (es decir, si p es un divisor primo de n, entonces p² también lo es) y no es una potencia perfecta (es decir, no existen números naturales m y k tales que n es igual a m^k). Por ejemplo,

  • 108 es un número de Aquiles proque es un número potente (ya que su factorización es 2^2 · 3^3, sus divisores primos son 2 and 3 y sus cuadrados (2^2 = 4 y 3^2 = 9) son divisores de 108. Además, 108 no es una potencia perfecta.
  • 360 no es un número de Aquiles ya que 5 es un divisor primo de 360, pero 5^2 = 15 no lo es.
  • 784 no es un número de Aquiles porque, aunque es potente, es una potencia perfecta ya que 784 = 28^2.

Los primeros números de Aquiles son

Definir las funciones

tales que

  • (esAquiles x) se verifica si x es un número de Aquiles. Por ejemplo,

  • huecosDeAquiles es la sucesión de la diferencias entre los números de Aquiles consecutivos. Por ejemplo,

  • (graficaHuecosDeAquiles n) dibuja la gráfica de los n primeros huecos de Aquiles. Por ejemplo, (graficaHuecosDeAquiles 160) dibuja

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Cálculo de pi mediante la variante de Euler de la serie armónica

En el artículo El desarrollo más bello de Pi como suma infinita, Miguel Ángel Morales comenta el desarrollo de pi publicado por Leonhard Euler en su libro «Introductio in Analysis Infinitorum» (1748).

El desarrollo es el siguiente
Calculo_de_pi_mediante_la_variante_de_Euler_de_la_serie_armonica_1
y se obtiene a partir de la serie armónica
Calculo_de_pi_mediante_la_variante_de_Euler_de_la_serie_armonica_2
modificando sólo el signo de algunos términos según el siguiente criterio:

  • Dejamos un + cuando el denominador de la fracción sea un 2 o un primo de la forma 4m-1.
  • Cambiamos a – si el denominador de la fracción es un primo de la forma 4m+1.
  • Si el número es compuesto ponemos el signo que quede al multiplicar los signos correspondientes a cada factor.

Por ejemplo,

  • la de denominador 3 = 4×1-1 lleva un +,
  • la de denominador 5 = 4×1+1 lleva un -,
  • la de denominador 13 = 4×3+1 lleva un -,
  • la de denominador 6 = 2×3 lleva un + (porque los dos llevan un +),
  • la de denominador 10 = 2×5 lleva un – (porque el 2 lleva un + y el 5 lleva un -) y
  • la de denominador 50 = 5x5x2 lleva un + (un – por el primer 5, otro – por el segundo 5 y un + por el 2).

Definir las funciones

tales que

  • (aproximacionPi n) es la aproximación de pi obtenida sumando los n primeros términos de la serie de Euler. Por ejemplo.

  • (grafica n) dibuja la gráfica de las aproximaciones de pi usando k sumando donde k toma los valores de la lista [100,110..n]. Por ejemplo, al evaluar (grafica 4000) se obtiene
    Calculo_de_pi_mediante_la_variante_de_Euler_de_la_serie_armonica_3.png

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Conjetura de Collatz generalizada

Sea p un número primo. Toma un número natural positivo, si es divisible entre un número primo menor que p divídelo entre el menor de dicho divisores, y en otro caso multiplícalo por p y súmale uno; si el resultado no es igual a uno, repite el proceso. Por ejemplo, para p = 7 y empezando en 42 el proceso es

La conjetura de Collatz generalizada afirma que este proceso siempre acaba en un número finito de pasos.

Definir la función

tal que (collatzGeneral p x) es la sucesión de los elementos obtenidos en el proceso anterior para el primo p enpezando en x. Por ejemplo,

Comprobar con QuickCheck que se verifica la conjetura de Collatz generalizada; es decir, para todos enteros positivos n, x si p es el primo n-ésimo entonces 1 pertenece a (collatzGeneral p x).

Nota: El ejercicio etá basado en el artículo Los primos de la conjetura de Collatz publicado la semana pasada por Francisco R. Villatoro en su blog La Ciencia de la Mula Francis.

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang=»haskell»> y otra con </pre>

Pensamiento

«Las matemáticas son la ciencia que utiliza palabras fáciles para ideas difíciles.»

Edward Kasner y James R. Newman

La conjetura de Mertens

Un número entero n es libre de cuadrados si no existe un número primo p tal que p² divide a n; es decir, los factores primos de n son todos distintos.

La función de Möbius μ(n) está definida para todos los enteros positivos como sigue:

  • μ(n) = 1 si n es libre de cuadrados y tiene un número par de factores primos.
  • μ(n) = -1 si n es libre de cuadrados y tiene un número impar de factores primos.
  • μ(n) = 0 si n no es libre de cuadrados.

Sus primeros valores son 1, -1, -1, 0, -1, 1, -1, 0, 0, 1, …

La función de Mertens M(n) está definida para todos los enteros positivos como la suma de μ(k) para 1 ≤ k ≤ n. Sus primeros valores son 1, 0, -1, -1, -2, -1, -2, -2, …

La conjetura de Mertens afirma que

Para todo entero x mayor que 1, el valor absoluto de la función de Mertens en x es menor que la raíz cuadrada de x.

La conjetura fue planteada por Franz Mertens en 1897. Riele Odlyzko, demostraronen 1985 que la conjetura de Mertens deja de ser cierta más o menos a partir de 10^{10^{64}}, cifra que luego de algunos refinamientos se redujo a 10^{10^{40}}.

Definir las funciones

tales que

  • (mobius n) es el valor de la función de Möbius en n. Por ejemplo,

  • (mertens n) es el valor de la función de Mertens en n. Por ejemplo,

  • (graficaMertens n) dibuja la gráfica de la función de Mertens, la raíz cuadrada y el opuestos de la raíz cuadrada para los n primeros n enteros positivos. Por ejemplo, (graficaMertens 1000) dibuja

Comprobar con QuickCheck la conjetura de Mertens.

Nota: El ejercicio está basado en La conjetura de Merterns y su relación con un número tan raro como extremada y colosalmente grande publicado por @Alvy la semana pasada en Microsiervos.

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang=»haskell»> y otra con </pre>

Pensamiento

«El control de la complejidad es la esencia de la programación informática.»

Brian Kernighan.

Las conjeturas de Catalan y de Pillai

La conjetura de Catalan, enunciada en 1844 por Eugène Charles Catalan y demostrada 2002 por Preda Mihăilescu1, afirma que

Las únicas dos potencias de números enteros consecutivos son 8 y 9 (que son respectivamente 2³ y 3²).

En otras palabras, la única solución entera de la ecuación

para x, a, y, b > 1 es x = 3, a = 2, y = 2, b = 3.

La conjetura de Pillai, propuesta por S.S. Pillai en 1942, generaliza este resultado y es un problema abierto. Afirma que cada entero se puede escribir sólo un número finito de veces como una diferencia de dos potencias perfectas. En otras palabras, para todo entero positivo n, el conjunto de soluciones de

para x, a, y, b > 1 es finito.

Por ejemplo, para n = 4, hay 3 soluciones

Las soluciones se pueden representar por la menor potencia (en el caso anterior, por 4, 32 y 121) ya que dado n (en el caso anterior es 4), la potencia mayor es la menor más n.

Definir las funciones

tales que

  • potenciasPerfectas es la lista de las potencias perfectas (es decir, de los números de la forma x^a con x y a mayores que 1). Por ejemplo,

  • (solucionesPillati n) es la lista de las menores potencias de las soluciones de la ecuación de Pillati x^a – y^b = n; es decir, es la lista de los u tales que u y u+n son potencias perfectas. Por ejemplo,

  • (solucionesPillatiAcotadas c n) es la lista de elementos de (solucionesPillati n) menores que n. Por ejemplo,

Soluciones

Referencia

Pensamiento

Y te enviaré mi canción:
«Se canta lo que se pierde»,
con un papagayo verde
que la diga en tu balcón.

Antonio Machado

Teorema de Liouville sobre listas CuCu

Una lista CuCu es una lista de números enteros positivos tales que la suma de sus Cubos es igual al Cuadrado de su suma. Por ejemplo, [1, 2, 3, 2, 4, 6] es una lista CuCu ya que

La lista de Liouville correspondiente al número entero positivo n es la lista formada por el número de divisores de cada divisor de n. Por ejemplo, para el número 20 se tiene que sus divisores son

puesto que el número de sus divisores es

  • El 1 tiene 1 divisor (el 1 solamente).
  • El 2 tiene 2 divisores (el 1 y el 2).
  • El 4 tiene 3 divisores (el 1, el 2 y el 4).
  • El 5 tiene 2 divisores (el 1 y el 5).
  • El 10 tiene 4 divisores (el 1, el 2, el 5 y el 10).
  • El 20 tiene 6 divisores (el 1, el 2, el 4, el 5, el 10 y el 20).

la lista de Liouville de 20 es [1, 2, 3, 2, 4, 6] que, como se comentó anteriormente, es una lista CuCu.

El teorema de Lioville afirma que todas las lista de Lioville son CuCu.

Definir las funciones

tales que

  • (esCuCu xs) se verifica si la lista xs es CuCu; es decir, la suma de los cubos de sus elementos es igual al cuadrado de su suma. Por ejemplo,

  • (liouville n) es la lista de Lioville correspondiente al número n. Por ejemplo,

Comprobar con QuickCheck

  • que para todo entero positivo n, (liouville (2^n)) es la lista [1,2,3,…,n+1] y
  • el teorema de Lioville; es decir, para todo entero positivo n, (liouville n) es una lista CuCu.

Nota: Este ejercicio está basado en Cómo generar conjuntos CuCu de Gaussianos.

Soluciones

Pensamiento

¡Oh, tarde viva y quieta
que opuso al panta rhei su nada corre.

Antonio Machado

Conjetura de Grimm

La conjetura de Grimm establece que a cada elemento de un conjunto de números compuestos consecutivos se puede asignar un número primo que lo divide, de forma que cada uno de los números primos elegidos es distinto de todos los demás. Más formalmente, si n+1, n+2, …, n+k son números compuestos, entonces existen números primos p(i), distintos entre sí, tales que p(i) divide a n+i para 1 ≤ i ≤ k.

Diremos que la lista ps = [p(1),…,p(k)] es una sucesión de Grim para la lista xs = [x(1),…,x(k)] si p(i) son números primos distintos y p(i) divide a x(i), para 1 ≤ i ≤ k. Por ejemplo, 2, 5, 13, 3, 7 es una sucesión de Grim de 24, 25, 26, 27, 28.

Definir las funciones

tales que

  • (compuestos n) es la mayor lista de números enteros consecutivos empezando en n. Por ejemplo,

  • (sucesionesDeGrim xs) es la lista de las sucesiones de Grim de xs. Por ejemplo,

Comprobar con QuickCheck la conjetura de Grim; es decir, para todo número n > 1, (sucesionesDeGrim (compuestos n)) es una lista no vacía.

Soluciones

Pensamiento

De encinar en encinar
se va fatigando el día.

Antonio Machado

Teorema de Carmichael

La sucesión de Fibonacci, F(n), es la siguiente sucesión infinita de números naturales:

La sucesión comieanza con los números 0 y 1. A partir de estos, cada término es la suma de los dos anteriores.

El teorema de Carmichael establece que para todo n mayor que 12, el n-ésimo número de Fibonacci F(n) tiene al menos un factor primo que no es factor de ninguno de los términos anteriores de la sucesión.

Si un número primo p es un factor de F(n) y no es factor de ningún F(m) con m < n, entonces se dice que p es un factor característico o un divisor primitivo de F(n).

Definir la función

tal que (factoresCaracteristicos n) es la lista de los factores característicos de F(n). Por ejemplo,

Comprobar con QuickCheck el teorema de Carmichael; es decir, para todo número entero (factoresCaracteristicos (13 + abs n)) es una lista no vacía.

Soluciones

Pensamiento

No puede ser
amor de tanta fortuna:
dos soledades en una.

Antonio Machado

Derivada aritmética

La derivada aritmética es una función definida sobre los números naturales por analogía con la regla del producto para el cálculo de las derivadas usada en análisis.

Para un número natural n su derivada D(n) se define por

Por ejemplo,

Definir la función

tal que (derivada n) es la derivada aritmética de n. Por ejemplo,

Comprobar con QuickCheck que si x es un número entero positivo y su descomposición en factores primos es

entonces la derivada de x es

Nota: No usar en la definición la propiedad que hay que comprobar.

Soluciones

Referencias

Pensamiento

En ese jardín, Guiomar,
el mutuo jardín que inventan
dos corazones al par,
se funden y complementan
nuestras horas.

Antonio Machado

Árbol binario de divisores

El árbol binario de los divisores de 24 es

Se puede representar por

usando el tipo de dato definido por

Análogamente se obtiene el árbol binario de cualquier número x: se comienza en x y en cada paso se tiene dos hijos (su menor divisor y su cociente) hasta obtener números primos en las hojas.

Definir las funciones

tales que

  • (arbolDivisores x) es el árbol binario de los divisores de x. Por ejemplo,

  • (hojasArbolDivisores x) es la lista de las hohas del árbol binario de los divisores de x. Por ejemplo

Soluciones

Pensamiento

Cuando el Ser que se es hizo la nada
y reposó que bien lo merecía,
ya tuvo el día noche, y compañía
tuvo el amante en la ausencia de la amada.

Antonio Machado

Pares definidos por su MCD y su MCM

Definir las siguientes funciones

tales que

  • (pares a b) es la lista de los pares de números enteros positivos tales que su máximo común divisor es a y su mínimo común múltiplo es b. Por ejemplo,

  • (nPares a b) es el número de pares de enteros positivos tales que su máximo común divisor es a y su mínimo común múltiplo es b. Por ejemplo,

Soluciones

Pensamiento

Largo es el camino de la enseñanza por medio de teorías; breve y eficaz por medio de ejemplos. ~ Séneca

Primos o cuadrados de primos

Definir la constante

cuyos elementos son los número primos o cuadrados de primos. Por ejemplo,

Comprobar con QuickCheck que las lista primosOcuadradosDePrimos y unifactorizables (definida en el ejercicio anterior) son iguales.

Soluciones

Pensamiento

Despacito y buena letra: el hacer las cosas bien importa más que el hacerlas.

Antonio Machado

Menor número triangular con más de n divisores

La sucesión de los números triangulares se obtiene sumando los números naturales.

Así, el 7º número triangular es

Los primeros 10 números triangulares son

Los divisores de los primeros 7 números triangulares son:

Como se puede observar, 28 es el menor número triangular con más de 5 divisores.

Definir la función

tal que (menorTriangularConAlMenosNDivisores n) es el menor número triangular que tiene al menos n divisores. Por ejemplo,

Nota: Este ejercicio está basado en el problema 12 del Proyecto Euler

Soluciones

Pensamiento

«La Matemática es una ciencia experimental y la computación es el experimento.» ~ Rivin

Mayor divisor primo

Los divisores primos de 13195 son 5, 7, 13 y 29. Por tanto, el mayor divisor primo de 13195 es 29.

Definir la función

tal que (mayorDivisorPrimo n) es el mayor divisor primo de n. Por ejemplo,

Nota: Este ejercicio está basado en el problema 3 del Proyecto Euler

Soluciones

Pensamiento

«Un programa de ordenador es una demostración.» ~ Igor Rivin

Factorización prima

La descomposición prima de 600 es

Definir la función

tal que (factorizacion x) ses la lista de las bases y exponentes de la descomposición prima de x. Por ejemplo,

Soluciones

Pensamiento

¿Todo para los demás?
Mancebo, llena tu jarro,
que ya te lo beberán.

Antonio Machado

Huecos de Aquiles

Un número de Aquiles es un número natural n que es potente (es decir, si p es un divisor primo de n, entonces p² también lo es) y no es una potencia perfecta (es decir, no existen números naturales m y k tales que n es igual a m^k). Por ejemplo,

  • 108 es un número de Aquiles proque es un número potente (ya que su factorización es 2^2 · 3^3, sus divisores primos son 2 and 3 y sus cuadrados (2^2 = 4 y 3^2 = 9) son divisores de 108. Además, 108 no es una potencia perfecta.
  • 360 no es un número de Aquiles ya que 5 es un divisor primo de 360, pero 5^2 = 15 no lo es.
  • 784 no es un número de Aquiles porque, aunque es potente, es una potencia perfecta ya que 784 = 28^2.

Los primeros números de Aquiles son

Definir las funciones

tales que

  • (esAquiles x) se verifica si x es un número de Aquiles. Por ejemplo,

  • huecosDeAquiles es la sucesión de la diferencias entre los números de Aquiles consecutivos. Por ejemplo,

  • (graficaHuecosDeAquiles n) dibuja la gráfica de los n primeros huecos de Aquiles. Por ejemplo, (graficaHuecosDeAquiles 160) dibuja

Soluciones

Pensamiento

Tengo a mis amigos
en mi soledad;
cuando estoy con ellos
¡qué lejos están!

Antonio Machado

Árbol binario de divisores

El árbol binario de los divisores de 90 es

Se puede representar por

usando el tipo de dato definido por

Análogamente se obtiene el árbol binario de cualquier número x: se comienza en x y en cada paso se tiene dos hijos (su menor divisor y su cociente) hasta obtener números primos en las hojas.

Definir las funciones

tales que

  • (arbolDivisores x) es el árbol binario de los divisores de x. Por ejemplo,

  • (hojasArbolDivisores x) es la lista de las hohas del árbol binario de los divisores de x. Por ejemplo

Soluciones

Pensamiento

Entre las brevas soy blando;
entre las rocas, de piedra.
¡Malo!

Antonio Machado

Mayor exponente

Definir las funciones

tales que

  • (mayorExponente n) es el mayor número b para el que existe un a tal que n = a^b. Se supone que n > 1. Por ejemplo,

  • (graficaMayorExponente n) dibuja la gráfica de los mayores exponentes de los números entre 2 y n. Por ejemplo, (graficaMayorExponente 50) dibuja

Soluciones

Pensamiento

Mirando mi calavera
un nuevo Hamlet dirá:
He aquí un lindo fósil de una
careta de carnaval.

Antonio Machado

Números altamente compuestos

Un número altamente compuesto es un entero positivo con más divisores que cualquier entero positivo más pequeño. Por ejemplo,

  • 4 es un número altamente compuesto porque es el menor con 3 divisores,
  • 5 no es altamente compuesto porque tiene menos divisores que 4 y
  • 6 es un número altamente compuesto porque es el menor con 4 divisores,

Los primeros números altamente compuestos son

Definir las funciones

tales que

  • (esAltamanteCompuesto x) se verifica si x es altamente compuesto. Por ejemplo,

  • altamente compuestos es la sucesión de los números altamente compuestos. Por ejemplo,

  • (graficaAltamenteCompuestos n) dibuja la gráfica de los n primeros números altamente compuestos. Por ejemplo, (graficaAltamenteCompuestos 25) dibuja

Soluciones

Pensamiento

Nuestras horas son minutos
cuando esperamos saber,
y siglos cuando sabemos
lo que se puede aprender.

Antonio Machado

El 2019 es semiprimo

Un número semiprimo es un número natural que es producto de dos números primos no necesariamente distintos. Por ejemplo, 26 es semiprimo (porque 26 = 2×13) y 49 también lo es (porque 49 = 7×7).

Definir las funciones

tales que

  • (esSemiprimo n) se verifica si n es semiprimo. Por ejemplo,

  • semiprimos es la sucesión de números semiprimos. Por ejemplo,

Soluciones

Pensamiento

Porque toda visión requiere distancia, no hay manera de ver las cosas sin salirse de ellas.

Antonio Machado

Número de divisores compuestos

Definir la función

tal que (nDivisoresCompuestos x) es el número de divisores de x que son compuestos (es decir, números mayores que 1 que no son primos). Por ejemplo,

Soluciones

Pensamiento

«Lo corriente en el hombre es la tendencia a creer verdadero cuanto le
reporta alguna utilidad. Por eso hay tantos hombres capaces de comulgar
con ruedas de molino.»

Antonio Machado

Divisores compuestos

Definir la función

tal que (divisoresCompuestos x) es la lista de los divisores de x que son números compuestos (es decir, números mayores que 1 que no son primos). Por ejemplo,

Soluciones

Pensamiento

«La verdad del hombre empieza donde acaba su propia tontería, pero la
tontería del hombre es inagotable.»

Antonio Machado

Árbol de divisores

Se dice que a es un divisor propio maximal de un número b si a es un divisor de b distinto de b y no existe ningún número c tal que a < c < b, a es un divisor de c y c es un divisor de b. Por ejemplo, 15 es un divisor propio maximal de 30, pero 5 no lo es.

El árbol de los divisores de un número x es el árbol que tiene como raíz el número x y cada nodo tiene como hijos sus divisores propios maximales. Por ejemplo, el árbol de divisores de 30 es

Usando el tipo de dato

el árbol anterior se representa por

Definir las funciones

tales que

  • (arbolDivisores x) es el árbol de los divisores del número x. Por ejemplo,

  • (nOcurrenciasArbolDivisores x y) es el número de veces que aparece el número x en el árbol de los divisores del número y. Por ejemplo,

Soluciones

Pensamiento

«¿Dónde está la utilidad
de nuestras utilidades?
Volvamos a la verdad:
vanidad de vanidades.»

Antonio Machado

Divisores propios maximales

Se dice que a es un divisor propio maximal de un número b si a es un divisor de b distinto de b y no existe ningún número c tal que a < c < b, a es un divisor de c y c es un divisor de b. Por ejemplo, 15 es un divisor propio maximal de 30, pero 5 no lo es.

Definir las funciones

tales que

  • (divisoresPropiosMaximales x) es la lista de los divisores propios maximales de x. Por ejemplo,

  • (nDivisoresPropiosMaximales x) es el número de divisores propios maximales de x. Por ejemplo,

Soluciones

Pensamiento

«Moneda que está en la mano
quizá se deba guardar;
la monedita del alma
se pierde si no se da.»

Antonio Machado