Menu Close

Etiqueta: primeFactors

Sucesión de sumas de dos números abundantes

Un número n es abundante si la suma de los divisores propios de n es mayor que n. El primer número abundante es el 12 (cuyos divisores propios son 1, 2, 3, 4 y 6 cuya suma es 16). Por tanto, el menor número que es la suma de dos números abundantes es el 24.

Definir la sucesión

   sumasDeDosAbundantes :: [Integer]

cuyos elementos son los números que se pueden escribir como suma de dos números abundantes. Por ejemplo,

   take 10 sumasDeDosAbundantes  ==  [24,30,32,36,38,40,42,44,48,50]

Suma de divisores

Definir la función

   sumaDivisores :: Integer -> Integer

tal que (sumaDivisores x) es la suma de los divisores de x. Por ejemplo,

   sumaDivisores 12  ==  28
   sumaDivisores 25  ==  31
   sumaDivisores (product [1..25])  ==  93383273455325195473152000
   length (show (sumaDivisores (product [1..30000])))  ==  121289
   maximum (map sumaDivisores [1..10^5])  ==  403200

Número de divisores

Definir la función

   numeroDivisores :: Integer -> Integer

tal que (numeroDivisores x) es el número de divisores de x. Por ejemplo,

   numeroDivisores 12  ==  6
   numeroDivisores 25  ==  3
   length (show (numeroDivisores (product [1..3*10^4])))  ==  1948

Conjunto de divisores

Definir la función

   divisores :: Integer -> [Integer]

tal que (divisores x) es el conjunto de divisores de x. Por ejemplo,

  divisores 30  ==  [1,2,3,5,6,10,15,30]
  length (divisores (product [1..10]))  ==  270
  length (divisores (product [1..25]))  ==  340032

Reconocimiento de potencias de 2

Definir la función

   esPotenciaDeDos :: Integer -> Bool

tal que (esPotenciaDeDos n) se verifica si n es una potencia de dos (suponiendo que n es mayor que 0). Por ejemplo.

   esPotenciaDeDos    1        == True
   esPotenciaDeDos    2        == True
   esPotenciaDeDos    6        == False
   esPotenciaDeDos    8        == True
   esPotenciaDeDos 1024        == True
   esPotenciaDeDos 1026        == False
   esPotenciaDeDos (2^(10^8))  == True

Conjunto de primos relativos

Dos números enteros positivos son primos relativos si no tienen ningún factor primo en común; es decit, si 1 es su único divisor común. Por ejemplo, 6 y 35 son primos entre sí, pero 6 y 27 no lo son porque ambos son divisibles por 3.

Definir la función

   primosRelativos :: [Int] -> Bool

tal que (primosRelativos xs) se verifica si los elementos de xs son primos relativos dos a dos. Por ejemplo,

   primosRelativos [6,35]         ==  True
   primosRelativos [6,27]         ==  False
   primosRelativos [2,3,4]        ==  False
   primosRelativos [6,35,11]      ==  True
   primosRelativos [6,35,11,221]  ==  True
   primosRelativos [6,35,11,231]  ==  False

Soluciones

import Test.QuickCheck
import Data.List (delete, intersect)
import Data.Numbers.Primes (primeFactors, primes)
import qualified Data.Set as S (disjoint, fromList)
 
-- 1ª solución
-- ===========
 
primosRelativos1 :: [Int] -> Bool
primosRelativos1 []     = True
primosRelativos1 (x:xs) =
  and [sonPrimosRelativos1 x y | y <- xs] && primosRelativos1 xs
 
-- (sonPrimosRelativos x y) se verifica si x e y son primos
-- relativos. Por ejemplo,
--    sonPrimosRelativos1 6 35  ==  True
--    sonPrimosRelativos1 6 27  ==  False
sonPrimosRelativos1 :: Int -> Int -> Bool
sonPrimosRelativos1 x y =
  null (divisoresPrimos x `intersect` divisoresPrimos y)
 
-- (divisoresPrimos x) es la lista de los divisores primos de x. Por
-- ejemplo,
--    divisoresPrimos 600  ==  [2,2,2,3,5,5]
divisoresPrimos :: Int -> [Int]
divisoresPrimos 1 = []
divisoresPrimos x =
  y : divisoresPrimos (x `div` y)
  where y = menorDivisorPrimo x
 
-- (menorDivisorPrimo x) es el menor divisor primo de x. Por ejemplo,
--    menorDivisorPrimo 15  ==  3
--    menorDivisorPrimo 11  ==  11
menorDivisorPrimo :: Int -> Int
menorDivisorPrimo x =
  head [y | y <- [2..], x `mod` y == 0]
 
-- 2ª solución
-- ===========
 
primosRelativos2 :: [Int] -> Bool
primosRelativos2 []     = True
primosRelativos2 (x:xs) =
  all (sonPrimosRelativos1 x) xs && primosRelativos2 xs
 
-- 3ª solución
-- ===========
 
primosRelativos3 :: [Int] -> Bool
primosRelativos3 []     = True
primosRelativos3 (x:xs) =
  all (sonPrimosRelativos2 x) xs && primosRelativos3 xs
 
sonPrimosRelativos2 :: Int -> Int -> Bool
sonPrimosRelativos2 x y =
  null (primeFactors x `intersect` primeFactors y)
 
-- 4ª solución
-- ===========
 
primosRelativos4 :: [Int] -> Bool
primosRelativos4 []     = True
primosRelativos4 (x:xs) =
  all (sonPrimosRelativos3 x) xs && primosRelativos4 xs
 
sonPrimosRelativos3 :: Int -> Int -> Bool
sonPrimosRelativos3 x y =
  S.fromList (primeFactors x) `S.disjoint` S.fromList (primeFactors y)
 
-- 5ª solución
-- ===========
 
primosRelativos5 :: [Int] -> Bool
primosRelativos5 []     = True
primosRelativos5 (x:xs) =
  all (sonPrimosRelativos5 x) xs && primosRelativos5 xs
 
sonPrimosRelativos5 :: Int -> Int -> Bool
sonPrimosRelativos5 x y =
  gcd x y == 1
 
-- Comprobación de equivalencia
-- ============================
 
-- La propiedad es
prop_primosRelativos :: [Positive Int] -> Bool
prop_primosRelativos xs =
  all (== primosRelativos1 ys)
      [primosRelativos2 ys,
       primosRelativos3 ys,
       primosRelativos4 ys,
       primosRelativos5 ys]
  where ys = getPositive <$> xs
 
-- La comprobación es
--    λ> quickCheck prop_primosRelativos
--    +++ OK, passed 100 tests.
 
-- Comparación de eficiencia
-- =========================
 
-- La comparación es
--    λ> primosRelativos1 (take 120 primes)
--    True
--    (1.92 secs, 869,909,416 bytes)
--    λ> primosRelativos2 (take 120 primes)
--    True
--    (1.99 secs, 869,045,656 bytes)
--    λ> primosRelativos3 (take 120 primes)
--    True
--    (0.09 secs, 221,183,200 bytes)
--
--    λ> primosRelativos3 (take 600 primes)
--    True
--    (2.62 secs, 11,196,690,856 bytes)
--    λ> primosRelativos4 (take 600 primes)
--    True
--    (2.66 secs, 11,190,940,456 bytes)
--    λ> primosRelativos5 (take 600 primes)
--    True
--    (0.14 secs, 123,673,648 bytes)

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Huecos de Aquiles

Un número de Aquiles es un número natural n que es potente (es decir, si p es un divisor primo de n, entonces p² también lo es) y no es una potencia perfecta (es decir, no existen números naturales m y k tales que n es igual a m^k). Por ejemplo,

  • 108 es un número de Aquiles proque es un número potente (ya que su factorización es 2^2 · 3^3, sus divisores primos son 2 and 3 y sus cuadrados (2^2 = 4 y 3^2 = 9) son divisores de 108. Además, 108 no es una potencia perfecta.
  • 360 no es un número de Aquiles ya que 5 es un divisor primo de 360, pero 5^2 = 15 no lo es.
  • 784 no es un número de Aquiles porque, aunque es potente, es una potencia perfecta ya que 784 = 28^2.

Los primeros números de Aquiles son

   72, 108, 200, 288, 392, 432, 500, 648, 675, 800, 864, 968, 972, ...

Definir las funciones

   esAquiles              :: Integer -> Bool
   huecosDeAquiles        :: [Integer]
   graficaHuecosDeAquiles :: Int -> IO ()

tales que

  • (esAquiles x) se verifica si x es un número de Aquiles. Por ejemplo,
     esAquiles 108         ==  True
     esAquiles 360         ==  False
     esAquiles 784         ==  False
     esAquiles 5425069447  ==  True
     esAquiles 5425069448  ==  True
  • huecosDeAquiles es la sucesión de la diferencias entre los números de Aquiles consecutivos. Por ejemplo,
     λ> take 15 huecosDeAquiles
     [36,92,88,104,40,68,148,27,125,64,104,4,153,27,171]
  • (graficaHuecosDeAquiles n) dibuja la gráfica de los n primeros huecos de Aquiles. Por ejemplo, (graficaHuecosDeAquiles 160) dibuja

Soluciones

import Data.List (group)
import Data.Numbers.Primes (primeFactors)
import Graphics.Gnuplot.Simple
 
-- Definición de esAquiles
-- =======================
 
esAquiles :: Integer -> Bool
esAquiles x = esPotente x && noEsPotenciaPerfecta x
 
-- (esPotente x) se verifica si x es potente. Por ejemplo,
--    esPotente 108  ==  True
--    esPotente 360  ==  False
--    esPotente 784  ==  True
esPotente :: Integer -> Bool
esPotente x = all (>1) (exponentes x)
 
-- (exponentes x) es la lista de los exponentes en la factorización de
-- x. Por ejemplo,
--    exponentes 108  ==  [2,3]
--    exponentes 360  ==  [3,2,1]
--    exponentes 784  ==  [4,2]
exponentes :: Integer -> [Int]
exponentes x = map length (group (primeFactors x))
 
-- (noEsPotenciaPerfecta x) se verifica si x no es una potencia
-- perfecta. Por ejemplo,
--    noEsPotenciaPerfecta 108  ==  True
--    noEsPotenciaPerfecta 360  ==  True
--    noEsPotenciaPerfecta 784  ==  False
noEsPotenciaPerfecta :: Integer -> Bool
noEsPotenciaPerfecta x = foldl1 gcd (exponentes x) == 1 
 
-- Definición de huecosDeAquiles
-- =============================
 
huecosDeAquiles :: [Integer]
huecosDeAquiles = zipWith (-) (tail aquiles) aquiles
 
-- aquiles es la sucesión de los números de Aquiles. Por ejemplo, 
--    λ> take 15 aquiles
--    [72,108,200,288,392,432,500,648,675,800,864,968,972,1125,1152]
aquiles :: [Integer]
aquiles = filter esAquiles [2..]
 
-- Definición de graficaHuecosDeAquiles
-- ====================================
 
graficaHuecosDeAquiles :: Int -> IO ()
graficaHuecosDeAquiles n =
  plotList [ Key Nothing
           , PNG "Huecos_de_Aquiles.png"
           ]
           (take n huecosDeAquiles)

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Cálculo de pi mediante la variante de Euler de la serie armónica

En el artículo El desarrollo más bello de Pi como suma infinita, Miguel Ángel Morales comenta el desarrollo de pi publicado por Leonhard Euler en su libro “Introductio in Analysis Infinitorum” (1748).

El desarrollo es el siguiente
Calculo_de_pi_mediante_la_variante_de_Euler_de_la_serie_armonica_1
y se obtiene a partir de la serie armónica
Calculo_de_pi_mediante_la_variante_de_Euler_de_la_serie_armonica_2
modificando sólo el signo de algunos términos según el siguiente criterio:

  • Dejamos un + cuando el denominador de la fracción sea un 2 o un primo de la forma 4m-1.
  • Cambiamos a – si el denominador de la fracción es un primo de la forma 4m+1.
  • Si el número es compuesto ponemos el signo que quede al multiplicar los signos correspondientes a cada factor.

Por ejemplo,

  • la de denominador 3 = 4×1-1 lleva un +,
  • la de denominador 5 = 4×1+1 lleva un -,
  • la de denominador 13 = 4×3+1 lleva un -,
  • la de denominador 6 = 2×3 lleva un + (porque los dos llevan un +),
  • la de denominador 10 = 2×5 lleva un – (porque el 2 lleva un + y el 5 lleva un -) y
  • la de denominador 50 = 5x5x2 lleva un + (un – por el primer 5, otro – por el segundo 5 y un + por el 2).

Definir las funciones

  aproximacionPi :: Int -> Double
  grafica        :: Int -> IO ()

tales que

  • (aproximacionPi n) es la aproximación de pi obtenida sumando los n primeros términos de la serie de Euler. Por ejemplo.
     aproximacionPi 1        ==  1.0
     aproximacionPi 10       ==  2.3289682539682537
     aproximacionPi 100      ==  2.934318000847734
     aproximacionPi 1000     ==  3.0603246224585128
     aproximacionPi 10000    ==  3.1105295744825403
     aproximacionPi 100000   ==  3.134308801935256
     aproximacionPi 1000000  ==  3.1395057903490806
  • (grafica n) dibuja la gráfica de las aproximaciones de pi usando k sumando donde k toma los valores de la lista [100,110..n]. Por ejemplo, al evaluar (grafica 4000) se obtiene
    Calculo_de_pi_mediante_la_variante_de_Euler_de_la_serie_armonica_3.png

Soluciones

import Data.Numbers.Primes
import Graphics.Gnuplot.Simple
 
-- 1ª definición
-- =============
 
aproximacionPi :: Int -> Double
aproximacionPi n =
  sum [1 / fromIntegral (k * signo k) | k <- [1..n]] 
 
signoPrimo :: Int -> Int
signoPrimo 2 = 1
signoPrimo p | p `mod` 4 == 3 = 1
             | otherwise      = -1
 
signo :: Int -> Int
signo n | isPrime n = signoPrimo n
        | otherwise = product (map signoPrimo (primeFactors n))
 
-- 2ª definición
-- =============
 
aproximacionPi2 :: Int -> Double
aproximacionPi2 n = serieEuler !! (n-1)
 
serieEuler :: [Double]
serieEuler =
  scanl1 (+) [1 / fromIntegral (n * signo n) | n <- [1..]]
 
-- Definición de grafica
-- =====================
 
grafica :: Int -> IO ()
grafica n = 
    plotList [Key Nothing]
             [(k,aproximacionPi2 k) | k <- [100,110..n]]

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Conjetura de Collatz generalizada

Sea p un número primo. Toma un número natural positivo, si es divisible entre un número primo menor que p divídelo entre el menor de dicho divisores, y en otro caso multiplícalo por p y súmale uno; si el resultado no es igual a uno, repite el proceso. Por ejemplo, para p = 7 y empezando en 42 el proceso es

   42
   -> 21   [= 42/2]
   -> 7    [= 21/3]
   -> 50   [= 7*7+1]
   -> 25   [= 50/5]
   -> 5    [= 25/5]
   -> 1    [= 5/5]

La conjetura de Collatz generalizada afirma que este proceso siempre acaba en un número finito de pasos.

Definir la función

   collatzGeneral :: Integer -> Integer -> [Integer]

tal que (collatzGeneral p x) es la sucesión de los elementos obtenidos en el proceso anterior para el primo p enpezando en x. Por ejemplo,

   take 15 (collatzGeneral 7 42) == [42,21,7,50,25,5,1,8,4,2,1,8,4,2,1]
   take 15 (collatzGeneral 3  6) == [6,3,10,5,16,8,4,2,1,4,2,1,4,2,1]
   take 15 (collatzGeneral 5  6) == [6,3,1,6,3,1,6,3,1,6,3,1,6,3,1]
   take 15 (collatzGeneral 7  6) == [6,3,1,8,4,2,1,8,4,2,1,8,4,2,1]
   take 15 (collatzGeneral 9  6) == [6,3,1,10,5,1,10,5,1,10,5,1,10,5,1]

Comprobar con QuickCheck que se verifica la conjetura de Collatz generalizada; es decir, para todos enteros positivos n, x si p es el primo n-ésimo entonces 1 pertenece a (collatzGeneral p x).

Nota: El ejercicio etá basado en el artículo Los primos de la conjetura de Collatz publicado la semana pasada por Francisco R. Villatoro en su blog La Ciencia de la Mula Francis.

Soluciones

import Data.Numbers.Primes (primeFactors, primes)
import Test.QuickCheck
 
collatzGeneral :: Integer -> Integer -> [Integer]
collatzGeneral p x =
  iterate (siguiente p) x
 
siguiente :: Integer -> Integer -> Integer
siguiente p x 
  | null xs   = p * x + 1
  | otherwise = x `div` head xs
  where xs = takeWhile (<p) (primeFactors x)
 
prop_collatzGeneral :: Int -> Integer -> Property
prop_collatzGeneral n x =
  n > 0 && x > 0 ==>
  1 `elem` collatzGeneral p x
  where p = primes !! n 
 
-- La comprobación es
--    λ> quickCheck prop_collatzGeneral
--    +++ OK, passed 100 tests.

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang=”haskell”> y otra con </pre>

Pensamiento

“Las matemáticas son la ciencia que utiliza palabras fáciles para ideas difíciles.”

Edward Kasner y James R. Newman

La conjetura de Mertens

Un número entero n es libre de cuadrados si no existe un número primo p tal que p² divide a n; es decir, los factores primos de n son todos distintos.

La función de Möbius μ(n) está definida para todos los enteros positivos como sigue:

  • μ(n) = 1 si n es libre de cuadrados y tiene un número par de factores primos.
  • μ(n) = -1 si n es libre de cuadrados y tiene un número impar de factores primos.
  • μ(n) = 0 si n no es libre de cuadrados.

Sus primeros valores son 1, -1, -1, 0, -1, 1, -1, 0, 0, 1, …

La función de Mertens M(n) está definida para todos los enteros positivos como la suma de μ(k) para 1 ≤ k ≤ n. Sus primeros valores son 1, 0, -1, -1, -2, -1, -2, -2, …

La conjetura de Mertens afirma que

Para todo entero x mayor que 1, el valor absoluto de la función de Mertens en x es menor que la raíz cuadrada de x.

La conjetura fue planteada por Franz Mertens en 1897. Riele Odlyzko, demostraronen 1985 que la conjetura de Mertens deja de ser cierta más o menos a partir de 10^{10^{64}}, cifra que luego de algunos refinamientos se redujo a 10^{10^{40}}.

Definir las funciones

   mobius :: Integer -> Integer
   mertens :: Integer -> Integer
   graficaMertens :: Integer -> IO ()

tales que

  • (mobius n) es el valor de la función de Möbius en n. Por ejemplo,
     mobius 6   ==  1
     mobius 30  ==  -1
     mobius 12  ==  0
  • (mertens n) es el valor de la función de Mertens en n. Por ejemplo,
     mertens 1     ==  1
     mertens 2     ==  0
     mertens 3     ==  -1
     mertens 5     ==  -2
     mertens 661   ==  -11
     mertens 1403  ==  11
  • (graficaMertens n) dibuja la gráfica de la función de Mertens, la raíz cuadrada y el opuestos de la raíz cuadrada para los n primeros n enteros positivos. Por ejemplo, (graficaMertens 1000) dibuja

Comprobar con QuickCheck la conjetura de Mertens.

Nota: El ejercicio está basado en La conjetura de Merterns y su relación con un número tan raro como extremada y colosalmente grande publicado por @Alvy la semana pasada en Microsiervos.

Soluciones

import Data.Numbers.Primes (primeFactors)
import Test.QuickCheck
import Graphics.Gnuplot.Simple
 
mobius :: Integer -> Integer
mobius n | tieneRepetidos xs = 0
         | otherwise         = (-1)^(length xs)
  where xs = primeFactors n
 
tieneRepetidos :: [Integer] -> Bool
tieneRepetidos xs =
  or [x == y | (x,y) <- zip xs (tail xs)]
 
mertens :: Integer -> Integer
mertens n = sum (map mobius [1..n])
 
-- Definición de graficaMertens
-- ============================
 
graficaMertens :: Integer -> IO ()
graficaMertens n = do
  plotLists [ Key Nothing
            , Title "Conjetura de Mertens"
            , PNG "La_conjetura_de_Mertens.png"
            ]
            [ [mertens k | k <- [1..n]]
            , raices
            , map negate raices
            ]
 
  where
    raices = [ceiling (sqrt k) | k <- [1..fromIntegral n]]
 
-- Conjetura de Mertens
-- ====================
 
-- La conjetura es
conjeturaDeMertens :: Integer -> Property
conjeturaDeMertens n =
  n > 1
  ==>
  abs (mertens n) < ceiling (sqrt n')
  where n' = fromIntegral n
 
-- La comprobación es
--    λ> quickCheck conjeturaDeMertens
--    +++ OK, passed 100 tests.

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang=”haskell”> y otra con </pre>

Pensamiento

“El control de la complejidad es la esencia de la programación informática.”

Brian Kernighan.