Mínima suma de las ramas de un árbol

Los árboles se pueden representar mediante el siguiente tipo de datos

Por ejemplo, los árboles

se representan por

Definir la función

tal que (minimaSuma a) es el mínimo de las sumas de las ramas del árbol a. Por ejemplo,

Soluciones

Números super pandigitales

Un entero positivo n es pandigital en base b si su expresión en base b contiene todos los dígitos de 0 a b-1 al menos una vez. Por ejemplo,

  • el 2 es pandigital en base 2 porque 2 en base 2 es 10,
  • el 11 es pandigital en base 3 porque 11 en base 3 es 102 y
  • el 75 es pandigital en base 4 porque 75 en base 4 es 1023.

Un número n es super pandigital de orden m si es pandigital en todas las bases
desde 2 hasta m. Por ejemplo, 978 es super pandigital de orden 5 pues

  • en base 2 es: 1111010010
  • en base 3 es: 1100020
  • en base 4 es: 33102
  • en base 5 es: 12403

Definir la función

tal que (superPandigitales m) es la lista de los números super pandigitales de orden m. Por ejemplo,

Soluciones

Ordenación por una fila

Las matrices se pueden representar por listas de lista. Por ejemplo, la matriz

se puede representar por

Definir la función

tal que (ordenaPorFila xss k) es la matriz obtenida ordenando xs por los elementos de la fila k. Por ejemplo,

Soluciones

Ordenación por una columna

Las matrices se pueden representar por listas de lista. Por ejemplo, la matriz

se puede representar por

Definir la función

tal que (ordenaPor xss k) es la matriz obtenida ordenando xs por los elementos de la columna k. Por ejemplo,

Soluciones

Selección por posición

Definir la función

tal que (seleccion xs ps) es la lista ordenada de los elementos que ocupan las posiciones indicadas en la lista ps. Por ejemplo,

Soluciones

Posiciones de equilibrio

Se dice que k es una posición de equilibrio de una lista xs si la suma de los elementos de xs en las posiciones menores que k es igual a la suma de los elementos de xs en las posiciones mayores que k. Por ejemplo, en la lista [-7,1,5,2,-4,3,0] el 3 es una posición de equilibrio ya que -7+1+5 = -4+3+0; también lo es el 6 ya que -7+1+5+2+(-4)+3 = 0.

Definir la función,

tal que (equilibrios xs) es la lista de las posiciones de equilibrio de xs. Por ejemplo,

Soluciones

Distancia a Erdős

Una de las razones por la que el matemático húngaro Paul Erdős es conocido es por la multitud de colaboraciones que realizó durante toda su carrera, un total de 511. Tal es así que se establece la distancia a Erdős como la distancia que has estado de coautoría con Erdős. Por ejemplo, si eres Paul Erdős tu distancia a Erdős es 0, si has escrito un artículo con Erdős tu distancia es 1, si has escrito un artículo con alguien que ha escrito un artículo con Erdős tu distancia es 2, etc. El objetivo de este problema es definir una función que a partir de una lista de pares de coautores y un número natural n calcular la lista de los matemáticos a una distancia n de Erdős.

Para el problema se considerará la siguiente lista de coautores

La lista anterior es real y se ha obtenido del artículo Famous trails to Paul Erdős.

Definir la función

tal que (numeroDeErdos xs n) es la lista de lista de los matemáticos de la
lista de coautores xs que se encuentran a una distancia n de Erdős. Por ejemplo,

Nota: Este ejercicio ha sido propuesto por Enrique Naranjo.

Soluciones

Agrupación por orden de aparición

Definir la función

tal que (agrupacion xs) es la lista obtenida agrupando los elementos de xs según su primera aparición. Por ejemplo,

Soluciones

Mayores que la mitad

Definir la función

tal que (mayoresMitad xs) es la lista de los elementos de xs que son mayores que la mitad de los elementos de xs, suponiendo que los elementos de xs son distintos. Por ejemplo,

Nota: Se considera que si la lista tiene 2n+1 elementos, su mitad tiene n elementos.

Soluciones

Caracteres en la misma posición que en el alfabeto

Un carácter c de una cadena cs está bien colocado si la posición de c en cs es la misma que en el abecedario (sin distinguir entre mayúsculas y minúsculas). Por ejemplo, los elementos bien colocados de la cadena «aBaCEria» son ‘a’, ‘B’ y ‘E’.

Definir la función

tal que (nBienColocados cs) es el número de elementos bien colocados de la cadena cs. Por ejemplo,

Soluciones

Referencias

Basado en el problema Count characters at same position as in English alphabets de Sahil Chhabra en GeeksforGeeks.

Suma de los máximos de los subconjuntos

Los subconjuntos distinto del vacío del conjunto {3, 2, 5}, junto con sus máximos elementos, son

Por tanto, la suma de los máximos elementos de los subconjuntos de {3, 2, 5} es 3 + 2 + 5 + 3 + 5 + 5 + 5 = 28.

Definir la función

tal que (sumaMaximos xs) es la suma de los máximos elementos de los subconjuntos de xs. Por ejemplo,

Soluciones

Basado en el artículo
Sum of maximum elements of all subsets
de Utkarsh Trivedi en GeeksforGeeks.

Elementos que respetan la ordenación

Se dice que un elemento x de una lista xs respeta la ordenación si x es mayor o igual que todos lo que tiene delante en xs y es menor o igual que todos lo que tiene detrás en xs. Por ejemplo, en la lista lista [3,2,1,4,6,5,7,9,8] el número 4 respeta la ordenación pero el número 5 no la respeta (porque es mayor que el 6 que está delante).

Definir la función

tal que (respetuosos xs) es la lista de los elementos de xs que respetan la ordenación. Por ejemplo,

Comprobar con QuickCheck que para cualquier lista de enteros xs se verifican las siguientes propiedades:

  • todos los elementos de (sort xs) respetan la ordenación y
  • en la lista (nub (reverse (sort xs))) hay como máximo un elemento que respeta la ordenación.

Soluciones

Sin ceros finales

Definir la función

tal que (sinCerosFinales n) es el número obtenido eliminando los ceros finales de n. Por ejemplo,

Comprobar con QuickCheck que, para cualquier número entero n,

Soluciones

Listas engarzadas

Una lista de listas es engarzada si el último elemento de cada lista coincide con el primero de la siguiente.

Definir la función

tal que (engarzada xss) se verifica si xss es una lista engarzada. Por ejemplo,

Soluciones

Listas alternadas

Una lista de números enteros se llama alternada si sus elementos son alternativamente par/impar o impar/par.

Definir la función

tal que (alternada xs) se verifica si xs es una lista alternada. Por ejemplo,

Soluciones

Problema de las particiones óptimas

El problema de la particiones óptimas consiste en dada una lista xs dividirla en dos sublistas ys y zs tales que el valor absoluto de la diferencia de la suma de los elementos de xs y la suma de los elemento de zs sea lo menor posible.Cada una de estas divisiones (ys,zs) es una partición óptima de xs. Por ejemplo, la partición óptima de [2,3,5] es ([2,3],[5]) ya que |(2+3) – 5| = 0. Una lista puede tener distintas particiones óptimas. Por ejemplo, [1,1,2,3] tiene dos particiones óptimas ([1,2],[1,3]) y ([1,1,2],[3]) ambas con diferencia 1 (es decir, 1 = |(1+2)-(1+3)| = |(1+1+2)-3|).

Definir la función

tal que (particionesOptimas xs) es la lista de las particiones óptimas de xs. Por ejemplo,

Soluciones

Huecos de Euclides

El teorema de Euclides afirma que existen infinitos números primos. En palabras de Euclides,

«Hay más números primos que cualquier cantidad propuesta de números primos.» (Proposición 20 del Libro IX de «Los Elementos»)

Su demostración se basa en que si p₁,…,pₙ son los primeros n números primos, entonces entre 1+pₙ y 1+p₁·p₂·…·pₙ hay algún número primo. La cantidad de dichos números primos se llama el n-ésimo hueco de Euclides. Por ejemplo, para n = 3 se tiene que p₁ = 2, p₂ = 3 y p₃ = 5 entre 1+p₃ = 6 y 1+p₁·p₂·p₃ = 31 hay 8 números primos (7, 11, 13, 17, 19, 23, 29 y 31), por lo que el valor del tercer hueco de Euclides es 8.

Definir la función

tal que (hueco n) es el n-ésimo hueco de Eulides. Por ejemplo,

Soluciones

Referencias

Representación binaria de los números de Carol

Un número de Carol es un número entero de la forma 4^n-2^{n+1}-1 o, equivalentemente, (2^n-1)^2-2. Los primeros números de Carol son -1, 7, 47, 223, 959, 3967, 16127, 65023, 261119, 1046527.

Definir las funciones

tales que

  • (carol n) es el n-ésimo número de Carol. Por ejemplo,

  • (carolBinario n) es la representación binaria del n-ésimo número de Carol. Por ejemplo,

Comprobar con QuickCheck que, para n > 2, la representación binaria del n-ésimo número de Carol es el número formado por n-2 veces el dígito 1, seguido por un 0 y a continuación n+1 veces el dígito 1.

Soluciones

Referencias

Menor potencia de 2 comenzando un número dado

Definir las siguientes funciones

tales que

  • (potenciasDe2 a) es la lista de las potencias de 2 que comienzan por a. Por ejemplo,

  • (menorPotenciaDe2 a) es la menor potencia de 2 que comienza con el número a. Por ejemplo,

Comprobar con QuickCheck que, para todo entero positivo a, existe una potencia de 2 que empieza por a.

Soluciones

Referencias

Máxima ramificación

Los árboles se pueden representar mediante el siguiente tipo de datos

Por ejemplo, los árboles

se representan por

En el primer ejemplo la máxima ramificación es 2 (en el nodo 1 que tiene 2 hijos), la del segundo es 3 (en el nodo 3 que tiene 3 hijos) y la del tercero es 3 (en el nodo 3 que tiene 3 hijos).

Definir la función

tal que (maximaRamificacion a) es la máxima ramificación del árbol a. Por ejemplo,

Soluciones

Números consecutivos compuestos

Una serie compuesta de longitud n es una lista de n números consecutivos que son todos compuestos. Por ejemplo, [8,9,10] y [24,25,26] son dos series compuestas de longitud 3.

Cada serie compuesta se puede representar por el par formado por su primer y último elemento. Por ejemplo, las dos series anteriores se pueden representar pos (8,10) y (24,26) respectivamente.

Definir la función

tal que (menorSerieCompuesta n) es la menor serie compuesta (es decir, la que tiene menores elementos) de longitud 3. Por ejemplo,

Comprobar con QuickCheck que para n > 1, el primer elemento de (menorSerieCompuesta n) es igual al primero de (menorSerieCompuesta (n-1)) o al primero de (menorSerieCompuesta (n+1)).

Soluciones

Referencias

Números poderosos

Un número es poderoso si es igual a la suma de sus dígitos elevados a sus respectivas posiciones. Por ejemplo, los números 89, 135 y 1306 son poderosos ya que

Definir la función

tal que (esPoderoso n) se verifica si n es poderoso. Por ejemplo,

Comprobar con QuickCheck que 12157692622039623539 es el mayor número poderoso.

Soluciones

Máximo producto en la partición de un número

El artículo de esta semana de Antonio Roldán en su blog Números y hoja de cálculo es Máximo producto en la partición de un número (1)

Una partición de un entero positivo n es una forma de descomponer n como suma de enteros positivos. Dos sumas se considerarán iguales si solo difieren en el orden de los sumandos. Por ejemplo, las 11 particiones de 6 (con sus correspondientes productos) son

Se observa que el máximo producto de las particiones de 6 es 9.

Definir la función

tal que (maximoProductoParticiones n) es el máximo de los productos de las particiones de n. Por ejemplo,

Comprobar con QuickChek que los únicos posibles factores de (maximoProductoParticiones n) son 2 y 3.

Soluciones

Referencia

Variación de la conjetura de Goldbach

La conjetura de Goldbach afirma que

Todo número entero mayor que 5 se puede escribir como suma de tres números primos.

En este ejercicio consideraremos la variación consistente en exigir que los tres sumandos sean distintos.

Definir las funciones

tales que

  • (sumas3PrimosDistintos n) es la lista de las descomposiciones decrecientes de n como tres primos distintos. Por ejemplo,

  • (conKsumas3PrimosDistintos k n) es la lista de los números menores o iguales que n que se pueden escribir en k forma distintas como suma de tres primos distintos. Por ejemplo,

  • (noSonSumas3PrimosDistintos n) es la lista de los números menores o iguales que n que no se pueden escribir como suma de tres primos distintos. Por ejemplo,

Soluciones

Referencias

Basado en el artículo Derivaciones de la conjetura de Goldbach de Claudio Meller en el blog Números y algo más.

Primo anterior

Definir la función

tal que (primoAnterior n) es el mayor primo menor que n (donde n > 2). Por ejemplo,

Calcular el menor número cuya distancia a su primo anterior es mayor que 40.

Soluciones

Primos de Kamenetsky

Un número primo se dice que es un primo de Kamenetsky si al anteponerlo cualquier dígito se obtiene un número compuesto. Por ejemplo, el 5 es un primo de Kamenetsky ya que 15, 25, 35, 45, 55, 65, 75, 85 y 95 son compuestos. También lo es 149 ya que 1149, 2149, 3149, 4149, 5149, 6149, 7149, 8149 y 9149 son compuestos.

Definir la sucesión

tal que sus elementos son los números primos de Kamenetsky. Por ejemplo,

Soluciones

Referencias

Sucesiones de listas de números

En la Olimpiada Internacional de Matemáticas del 2012 se propuso el siguiente problema:

Varios enteros positivos se escriben en una lista. Iterativamente, Alicia elige dos números adyacentes x e y tales que x > y y x está a la izquierda de y y reemplaza el par (x,y) por (y+1,x) o (x-1,x). Demostrar que sólo puede aplicar un número finito de dichas iteraciones.

Por ejemplo, las transformadas de la lista [1,3,2] son [1,2,3] y [1,3,3] y las dos obtenidas son finales (es decir, no se les puede aplicar ninguna transformación).

Definir las funciones

tales que

  • (soluciones xs) es la lista de pares (n,ys) tales que ys es una lista obtenida aplicándole n transformaciones a xs. Por ejemplo,

  • (finales xs) son las listas obtenidas transformando xs y a las que no se les puede aplicar más transformaciones. Por ejemplo,

  • (finalesMaximales xs) es el par (n,yss) tal que la longitud de las cadenas más largas de transformaciones a partir de xs e yss es la lista de los estados finales a partir de xs con n transformaciones. Por ejemplo,

Soluciones

Problema de las jarras

En el problema de las jarras (A,B,C) se tienen dos jarras sin marcas de medición, una de A litros de capacidad y otra de B. También se dispone de una bomba que permite llenar las jarras de agua.

El problema de las jarras (A,B,C) consiste en determinar cómo se puede lograr tener exactamente C litros de agua en la jarra de A litros de capacidad.

Definir, mediante búsqueda en espacio de estados, la función

tal (jarras (a,b,c)) es la lista de las soluciones del problema de las
jarras (a,b,c). Por ejemplo,

La interpretación [(0,0),(4,0),(1,3),(1,0),(0,1),(4,1),(2,3)] es:

  • (0,0) se inicia con las dos jarras vacías,
  • (4,0) se llena la jarra de 4 con el grifo,
  • (1,3) se llena la de 3 con la de 4,
  • (1,0) se vacía la de 3,
  • (0,1) se pasa el contenido de la primera a la segunda,
  • (4,1) se llena la primera con el grifo,
  • (2,3) se llena la segunda con la primera.

Otros ejemplos

Nota: Las librerías necesarias se encuentran en la página de códigos.

Soluciones

Problema del dominó

Las fichas del dominó se pueden representar por pares de números enteros. El problema del dominó consiste en colocar todas las fichas de una lista dada de forma que el segundo número de cada ficha coincida con el primero de la siguiente.

Definir, mediante búsqueda en espacio de estados, la función

tal que (domino fs) es la lista de las soluciones del problema del dominó correspondiente a las fichas fs. Por ejemplo,

Nota: Las librerías necesarias se encuentran en la página de códigos.

Soluciones

Sucesión duplicadora

Para cada entero positivo n, existe una única sucesión que empieza en 1, termina en n y en la que cada uno de sus elementos es el doble de su anterior o el doble más uno. Dicha sucesión se llama la sucesión duplicadora de n. Por ejemplo, la sucesión duplicadora de 13 es [1, 3, 6, 13], ya que

Definir la función

tal que (duplicadora n) es la sucesión duplicadora de n. Por ejemplo,

Soluciones