Menu Close

Etiqueta: nrows

Camino de máxima suma en una matriz

Los caminos desde el extremo superior izquierdo (posición (1,1)) hasta el extremo inferior derecho (posición (3,4)) en la matriz

   (  1  6 11  2 )
   (  7 12  3  8 )
   (  3  8  4  9 )

moviéndose en cada paso una casilla hacia abajo o hacia la derecha, son los siguientes:

   1, 7,  3, 8, 4, 9
   1, 7, 12, 8, 4, 9
   1, 7, 12, 3, 4, 9
   1, 7, 12, 3, 8, 9
   1, 6, 12, 8, 4, 9
   1, 6, 12, 3, 4, 9
   1, 6, 12, 3, 8, 9
   1, 6, 11, 3, 4, 9
   1, 6, 11, 3, 8, 9
   1, 6, 11, 2, 8, 9

Las sumas de los caminos son 32, 41, 36, 40, 40, 35, 39, 34, 38 y 37, respectivamente. El camino de máxima suma es el segundo (1, 7, 12, 8, 4, 9) que tiene una suma de 41.

Definir la función

   caminoMaxSuma :: Matrix Int -> [Int]

tal que (caminoMaxSuma m) es un camino de máxima suma en la matriz m desde el extremo superior izquierdo hasta el extremo inferior derecho, moviéndose en cada paso una casilla hacia abajo o hacia la derecha. Por ejemplo,

   λ> caminoMaxSuma (fromLists [[1,6,11,2],[7,12,3,8],[3,8,4,9]])
   [1,7,12,8,4,9]
   λ> sum (caminoMaxSuma (fromList 800 800 [1..]))
   766721999

Nota: Se recomienda usar programación dinámica.

Soluciones

import Data.Matrix
 
-- 1ª definición
-- =============
 
caminoMaxSuma1 :: Matrix Int -> [Int]
caminoMaxSuma1 m =
  head [c | c <- cs, sum c == k] 
  where cs = caminos1 m
        k  = maximum (map sum cs)
 
caminos1 :: Matrix Int -> [[Int]]
caminos1 m =
  map reverse (caminos1Aux m (nf,nc))
  where nf = nrows m
        nc = ncols m
 
-- (caminos1Aux p x) es la lista de los caminos invertidos en la matriz p
-- desde la posición (1,1) hasta la posición x. Por ejemplo,
caminos1Aux :: Matrix Int -> (Int,Int) -> [[Int]]
caminos1Aux m (1,1) = [[m!(1,1)]]
caminos1Aux m (1,j) = [[m!(1,k) | k <- [j,j-1..1]]]
caminos1Aux m (i,1) = [[m!(k,1) | k <- [i,i-1..1]]]
caminos1Aux m (i,j) = [m!(i,j) : xs
                      | xs <- caminos1Aux m (i,j-1) ++
                              caminos1Aux m (i-1,j)]
 
-- 2ª definición
-- =============
 
caminoMaxSuma2 :: Matrix Int -> [Int]
caminoMaxSuma2 m =
  head [c | c <- cs, sum c == k] 
  where cs = caminos2 m
        k  = maximum (map sum cs)
 
caminos2 :: Matrix Int -> [[Int]]
caminos2 m =
  map reverse (matrizCaminos m ! (nrows m, ncols m))
 
matrizCaminos :: Matrix Int -> Matrix [[Int]]
matrizCaminos m = q
  where
    q = matrix (nrows m) (ncols m) f
    f (1,y) = [[m!(1,z) | z <- [y,y-1..1]]]
    f (x,1) = [[m!(z,1) | z <- [x,x-1..1]]]
    f (x,y) = [m!(x,y) : cs | cs <- q!(x-1,y) ++ q!(x,y-1)]  
 
-- 3ª definición (con programación dinámica)
-- =========================================
 
caminoMaxSuma3 :: Matrix Int -> [Int]
caminoMaxSuma3 m = reverse (snd (q ! (nf,nc)))
  where nf = nrows m
        nc = ncols m
        q  = caminoMaxSumaAux m
 
caminoMaxSumaAux :: Matrix Int -> Matrix (Int,[Int])
caminoMaxSumaAux m = q 
  where
    nf = nrows m
    nc = ncols m
    q  = matrix nf nc f
      where
        f (1,1) = (m!(1,1),[m!(1,1)])
        f (1,j) = (k + m!(1,j), m!(1,j):xs)
          where (k,xs) = q!(1,j-1)
        f (i,1) = (k + m!(i,1), m!(i,1):xs)
          where (k,xs) = q!(i-1,1)        
        f (i,j) | k1 > k2   = (k1 + m!(i,j), m!(i,j):xs)
                | otherwise = (k2 + m!(i,j), m!(i,j):ys)
          where (k1,xs) = q!(i,j-1)
                (k2,ys) = q!(i-1,j)
 
-- Comparación de eficiencia
-- -------------------------
 
--    λ> length (caminoMaxSuma1 (fromList 11 11 [1..]))
--    21
--    (10.00 secs, 1,510,120,328 bytes)
--    λ> length (caminoMaxSuma2 (fromList 11 11 [1..]))
--    21
--    (3.84 secs, 745,918,544 bytes)
--    λ> length (caminoMaxSuma3 (fromList 11 11 [1..]))
--    21
--    (0.01 secs, 0 bytes)

Máximo de las sumas de los caminos en una matriz

Los caminos desde el extremo superior izquierdo (posición (1,1)) hasta el extremo inferior derecho (posición (3,4)) en la matriz

   (  1  6 11  2 )
   (  7 12  3  8 )
   (  3  8  4  9 )

moviéndose en cada paso una casilla hacia abajo o hacia la derecha, son los siguientes:

   1, 7,  3, 8, 4, 9
   1, 7, 12, 8, 4, 9
   1, 7, 12, 3, 4, 9
   1, 7, 12, 3, 8, 9
   1, 6, 12, 8, 4, 9
   1, 6, 12, 3, 4, 9
   1, 6, 12, 3, 8, 9
   1, 6, 11, 3, 4, 9
   1, 6, 11, 3, 8, 9
   1, 6, 11, 2, 8, 9

Las sumas de los caminos son 32, 41, 36, 40, 40, 35, 39, 34, 38 y 37, respectivamente. El máximo de las suma de los caminos es 41.

Definir la función

   maximaSuma :: Matrix Int -> Int

tal que (maximaSuma m) es el máximo de las sumas de los caminos en la matriz m desde el extremo superior izquierdo hasta el extremo inferior derecho, moviéndose en cada paso una casilla hacia abajo o hacia la derecha. Por ejemplo,

   λ> maximaSuma (fromLists [[1,6,11,2],[7,12,3,8],[3,8,4,9]])
   41
   λ> maximaSuma (fromList 800 800 [1..])
   766721999

Nota: Se recomienda usar programación dinámica.

Soluciones

import Data.Matrix
 
-- 1ª definición
-- =============
 
maximaSuma1 :: Matrix Int -> Int
maximaSuma1 =
  maximum . map sum . caminos1
 
caminos1 :: Matrix Int -> [[Int]]
caminos1 m =
  map reverse (caminos1Aux m (nf,nc))
  where nf = nrows m
        nc = ncols m
 
-- (caminos1Aux p x) es la lista de los caminos invertidos en la matriz p
-- desde la posición (1,1) hasta la posición x. Por ejemplo,
caminos1Aux :: Matrix Int -> (Int,Int) -> [[Int]]
caminos1Aux m (1,1) = [[m!(1,1)]]
caminos1Aux m (1,j) = [[m!(1,k) | k <- [j,j-1..1]]]
caminos1Aux m (i,1) = [[m!(k,1) | k <- [i,i-1..1]]]
caminos1Aux m (i,j) = [m!(i,j) : xs
                      | xs <- caminos1Aux m (i,j-1) ++
                              caminos1Aux m (i-1,j)]
 
-- 2ª definición
-- =============
 
maximaSuma2 :: Matrix Int -> Int
maximaSuma2 =
  maximum . map sum . caminos2
 
caminos2 :: Matrix Int -> [[Int]]
caminos2 m =
  map reverse (matrizCaminos m ! (nrows m, ncols m))
 
matrizCaminos :: Matrix Int -> Matrix [[Int]]
matrizCaminos m = q
  where
    q = matrix (nrows m) (ncols m) f
    f (1,y) = [[m!(1,z) | z <- [y,y-1..1]]]
    f (x,1) = [[m!(z,1) | z <- [x,x-1..1]]]
    f (x,y) = [m!(x,y) : cs | cs <- q!(x-1,y) ++ q!(x,y-1)]  
 
-- 3ª definicion (por recursión, sin calcular el camino)
-- =====================================================
 
maximaSuma3 :: Matrix Int -> Int
maximaSuma3 m = maximaSuma3Aux m (nf,nc)
  where nf = nrows m
        nc = ncols m
 
-- (maximaSuma3Aux m p) calcula la suma máxima de un camino hasta la
-- posición p. Por ejemplo,
--    λ> maximaSuma3Aux (fromLists [[1,6,11,2],[7,12,3,8],[3,8,4,9]]) (3,4)
--    41
--    λ> maximaSuma3Aux (fromLists [[1,6,11,2],[7,12,3,8],[3,8,4,9]]) (3,3)
--    32
--    λ> maximaSuma3Aux (fromLists [[1,6,11,2],[7,12,3,8],[3,8,4,9]]) (2,4)
--    31
maximaSuma3Aux :: Matrix Int -> (Int,Int) -> Int
maximaSuma3Aux m (1,1) = m ! (1,1)
maximaSuma3Aux m (1,j) = maximaSuma3Aux m (1,j-1) + m ! (1,j)
maximaSuma3Aux m (i,1) = maximaSuma3Aux m (i-1,1) + m ! (i,1)
maximaSuma3Aux m (i,j) =
  max (maximaSuma3Aux m (i,j-1)) (maximaSuma3Aux m (i-1,j)) + m ! (i,j)
 
-- 4ª solución (mediante programación dinámica)
-- ============================================
 
maximaSuma4 :: Matrix Int -> Int
maximaSuma4 m = q ! (nf,nc)
  where nf = nrows m
        nc = ncols m
        q  = matrizMaximaSuma m
 
-- (matrizMaximaSuma m) es la matriz donde en cada posición p se
-- encuentra el máxima de las sumas de los caminos desde (1,1) a p en la
-- matriz m. Por ejemplo,   
--    λ> matrizMaximaSuma (fromLists [[1,6,11,2],[7,12,3,8],[3,8,4,9]]) 
--    (  1  7 18 20 )
--    (  8 20 23 31 )
--    ( 11 28 32 41 )
matrizMaximaSuma :: Matrix Int -> Matrix Int
matrizMaximaSuma m = q 
  where nf = nrows m
        nc = ncols m
        q  = matrix nf nc f
          where  f (1,1) = m ! (1,1)
                 f (1,j) = q ! (1,j-1) + m ! (1,j)
                 f (i,1) = q ! (i-1,1) + m ! (i,1)
                 f (i,j) = max (q ! (i,j-1)) (q ! (i-1,j)) + m ! (i,j)
 
-- Comparación de eficiencia
-- =========================
 
--    λ> maximaSuma1 (fromList 8 8 [1..])
--    659
--    (0.11 secs, 31,853,136 bytes)
--    λ> maximaSuma1a (fromList 8 8 [1..])
--    659
--    (0.09 secs, 19,952,640 bytes)
-- 
--    λ> maximaSuma1 (fromList 10 10 [1..])
--    1324
--    (2.25 secs, 349,722,744 bytes)
--    λ> maximaSuma2 (fromList 10 10 [1..])
--    1324
--    (0.76 secs, 151,019,296 bytes)
--    
--    λ> maximaSuma2 (fromList 11 11 [1..])
--    1781
--    (3.02 secs, 545,659,632 bytes)
--    λ> maximaSuma3 (fromList 11 11 [1..])
--    1781
--    (1.57 secs, 210,124,912 bytes)
--    
--    λ> maximaSuma3 (fromList 12 12 [1..])
--    2333
--    (5.60 secs, 810,739,032 bytes)
--    λ> maximaSuma4 (fromList 12 12 [1..])
--    2333
--    (0.01 secs, 23,154,776 bytes)

Caminos en una matriz

Los caminos desde el extremo superior izquierdo (posición (1,1)) hasta el extremo inferior derecho (posición (3,4)) en la matriz

   (  1  6 11  2 )
   (  7 12  3  8 )
   (  3  8  4  9 )

moviéndose en cada paso una casilla hacia abajo o hacia la derecha, son los siguientes:

   1, 7,  3, 8, 4, 9
   1, 7, 12, 8, 4, 9
   1, 7, 12, 3, 4, 9
   1, 7, 12, 3, 8, 9
   1, 6, 12, 8, 4, 9
   1, 6, 12, 3, 4, 9
   1, 6, 12, 3, 8, 9
   1, 6, 11, 3, 4, 9
   1, 6, 11, 3, 8, 9
   1, 6, 11, 2, 8, 9

Definir la función

   caminos :: Matrix Int -> [[Int]]

tal que (caminos m) es la lista de los caminos en la matriz m desde el extremo superior izquierdo hasta el extremo inferior derecho, moviéndose en cada paso una casilla hacia abajo o hacia la derecha. Por ejemplo,

   λ> caminos (fromLists [[1,6,11,2],[7,12,3,8],[3,8,4,9]])
   [[1,7, 3,8,4,9],
    [1,7,12,8,4,9],
    [1,7,12,3,4,9],
    [1,7,12,3,8,9],
    [1,6,12,8,4,9],
    [1,6,12,3,4,9],
    [1,6,12,3,8,9],
    [1,6,11,3,4,9],
    [1,6,11,3,8,9],
    [1,6,11,2,8,9]]
   λ> length (caminos (fromList 12 13 [1..]))
   1352078

Nota: Se recomienda usar programación dinámica.

Soluciones

import Data.Matrix
 
-- 1ª definición de caminos (por recursión)
-- ----------------------------------------
 
caminos1 :: Matrix Int -> [[Int]]
caminos1 a = aux (1,1)
  where
    aux (i,j)
      | i == m           = [[a!(i,k) | k <- [j..n]]]
      | j == n           = [[a!(k,j) | k <- [i..m]]]
      | otherwise        = [a!(i,j) : cs | cs <- aux (i+1,j) ++ aux (i,j+1)]
      where m = nrows a
            n = ncols a
 
-- 2ª solución (mediante programación dinámica)
-- --------------------------------------------
 
caminos2 :: Matrix Int -> [[Int]]
caminos2 a = q ! (1,1)
  where
    q = matrix m n f
    m = nrows a
    n = ncols a
    f (i,j) | i == m    = [[a!(i,k) | k <- [j..n]]]
            | j == n    = [[a!(k,j) | k <- [i..m]]]
            | otherwise = [a!(i,j) : cs | cs <- q!(i+1,j) ++ q!(i,j+1)]  
 
-- 3ª solución
-- ===========
 
caminos3 :: Matrix Int -> [[Int]]
caminos3 a
  | m == 1 || n == 1 = [toList a]
  | otherwise = map (a ! (1,1):) (caminos3 (submatrix 2 m 1 n a) ++
                                  caminos3 (submatrix 1 m 2 n a)) 
  where m = nrows a
        n = ncols a
 
-- Comparación de eficiencia
-- -------------------------
 
--    λ> length (caminos1 (fromList 11 11 [1..]))
--    184756
--    (4.15 secs, 738,764,712 bytes)
--    λ> length (caminos2 (fromList 11 11 [1..]))
--    184756
--    (0.74 secs, 115,904,952 bytes)
--    λ> length (caminos3 (fromList 11 11 [1..]))
--    184756
--    (2.22 secs, 614,472,136 bytes)

Matriz de mínimas distancias

Definir las funciones

   minimasDistancias             :: Matrix Int -> Matrix Int
   sumaMinimaDistanciasIdentidad :: Int -> Int

tales que

  • (mininasDistancias a) es la matriz de las mínimas distancias de cada elemento de a hasta alcanzar un 1 donde un paso es un movimiento hacia la izquierda, derecha, arriba o abajo. Por ejemplo,
     λ> minimasDistancias (fromLists [[0,1,1],[0,0,1]])
     ( 1 0 0 )
     ( 2 1 0 )
     λ> minimasDistancias (fromLists [[0,0,1],[1,0,0]])
     ( 1 1 0 )
     ( 0 1 1 )
     λ> minimasDistancias (identity 5)
     ( 0 1 2 3 4 )
     ( 1 0 1 2 3 )
     ( 2 1 0 1 2 )
     ( 3 2 1 0 1 )
     ( 4 3 2 1 0 )
  • (sumaMinimaDistanciasIdentidad n) es la suma de los elementos de la matriz de las mínimas distancias correspondiente a la matriz identidad de orden n. Por ejemplo,
     sumaMinimaDistanciasIdentidad 5       ==  40
     sumaMinimaDistanciasIdentidad (10^2)  ==  333300
     sumaMinimaDistanciasIdentidad (10^4)  ==  333333330000
     sumaMinimaDistanciasIdentidad (10^6)  ==  333333333333000000

Soluciones

import Data.Matrix     
import Data.Maybe      
import Test.QuickCheck 
 
-- 1ª definición de minimasDistancias
-- ==================================
 
minimasDistancias :: Matrix Int -> Matrix Int
minimasDistancias a = 
  matrix (nrows a) (ncols a) (\(i,j) -> minimaDistancia (i,j) a) 
 
minimaDistancia :: (Int,Int) -> Matrix Int -> Int
minimaDistancia (a,b) p =
  minimum [distancia (a,b) (c,d) | (c,d) <- unos p]
 
unos :: Matrix Int -> [(Int,Int)]
unos p = [(i,j) | i <- [1..nrows p]
                , j <- [1..ncols p]
                , p ! (i,j) == 1]
 
distancia :: (Int,Int) -> (Int,Int) -> Int
distancia (a,b) (c,d) = abs (c - a) + abs (d - b)
 
-- 2ª definición de minimasDistancias
-- ==================================
 
minimasDistancias2 :: Matrix Int -> Matrix Int
minimasDistancias2 a = fmap fromJust (aux (matrizInicial a))
  where aux b | Nothing `elem` c = aux c
              | otherwise        = c
          where c = propagacion b
 
-- (matrizInicial a) es la matriz que tiene (Just 0) en los elementos de
-- a iguales a 1 y Nothing en los restantes. Por ejemplo,
--    λ> matrizInicial (fromLists [[0,0,1],[1,0,0]])
--    ( Nothing Nothing  Just 0 )
--    (  Just 0 Nothing Nothing )
matrizInicial :: Matrix Int -> Matrix (Maybe Int)
matrizInicial a = matrix m n f
  where m = nrows a
        n = ncols a
        f (i,j) | a ! (i,j) == 1 = Just 0
                | otherwise      = Nothing
 
-- (propagacion a) es la matriz obtenida cambiando los elementos Nothing
-- de a por el siguiente del mínimo de los valores de sus vecinos. Por
-- ejemplo,
--    λ> propagacion (fromLists [[0,1,1],[0,0,1]])
--    (  Just 1  Just 0  Just 0 )
--    ( Nothing  Just 1  Just 0 )
--    
--    λ> propagacion it
--    ( Just 1 Just 0 Just 0 )
--    ( Just 2 Just 1 Just 0 )
propagacion :: Matrix (Maybe Int) -> Matrix (Maybe Int)
propagacion a = matrix m n f
  where
    m = nrows a
    n = ncols a
    f (i,j) | isJust x  = x
            | otherwise = siguiente (minimo (valoresVecinos a (i,j)))
      where x = a ! (i,j)
 
-- (valoresVecinos a p) es la lista de los valores de los vecinos la
-- posición p en la matriz a. Por ejemplo,             
--    λ> a = fromList 3 4 [1..]
--    λ> a
--    (  1  2  3  4 )
--    (  5  6  7  8 )
--    (  9 10 11 12 )
--    
--    λ> valoresVecinos a (1,1)
--    [5,2]
--    λ> valoresVecinos a (2,3)
--    [3,11,6,8]
--    λ> valoresVecinos a (2,4)
--    [4,12,7]
valoresVecinos :: Matrix a -> (Int,Int) -> [a]
valoresVecinos a (i,j) = [a ! (k,l) | (k,l) <- vecinos m n (i,j)]
  where m = nrows a
        n = ncols a
 
-- (vecinos m n p) es la lista de las posiciones vecinas de la posición
-- p en la matriz a; es decir, los que se encuentran a su izquierda,
-- derecha, arriba o abajo. por ejemplo,
--    vecinos 3 4 (1,1)  ==  [(2,1),(1,2)]
--    vecinos 3 4 (2,3)  ==  [(1,3),(3,3),(2,2),(2,4)]
--    vecinos 3 4 (2,4)  ==  [(1,4),(3,4),(2,3)]
vecinos :: Int -> Int -> (Int,Int) -> [(Int,Int)]
vecinos m n (i,j) = [(i - 1,j)     | i > 1] ++
                    [(i + 1,j)     | i < m] ++
                    [(i,    j - 1) | j > 1] ++
                    [(i,    j + 1) | j < n]
 
-- (minimo xs) es el mínimo de la lista de valores opcionales xs
-- (considerando Nothing como el mayor elemento). Por ejemplo,
--    minimo [Just 3, Nothing, Just 2]  ==  Just 2
minimo :: [Maybe Int] -> Maybe Int
minimo = foldr1 minimo2
 
-- (minimo2 x y) es el mínimo de los valores opcionales x e y
-- (considerando Nothing como el mayor elemento). Por ejemplo,
--    minimo2 (Just 3) (Just 2)  ==  Just 2
--    minimo2 (Just 1) (Just 2)  ==  Just 1
--    minimo2 (Just 1) Nothing   ==  Just 1
--    minimo2 Nothing (Just 2)   ==  Just 2
--    minimo2 Nothing Nothing    ==  Nothing
minimo2 :: Maybe Int -> Maybe Int -> Maybe Int
minimo2 (Just x) (Just y) = Just (min x y)
minimo2 Nothing  (Just y) = Just y
minimo2 (Just x) Nothing  = Just x
minimo2 Nothing  Nothing  = Nothing
 
-- (siguiente x) es el siguiente elemento del opcional x (considerando
-- Nothing como el infinito). Por ejemplo, 
--    siguiente (Just 3)  ==  Just 4
--    siguiente Nothing  ==  Nothing
siguiente :: Maybe Int -> Maybe Int
siguiente (Just x) = Just (1 + x)
siguiente Nothing  = Nothing
 
-- Comparación de eficiencia
-- =========================
 
-- La comparación es
--    λ> maximum (minimasDistancias (identity 40))
--    39
--    (3.85 secs, 654,473,496 bytes)
--    λ> maximum (minimasDistancias2 (identity 40))
--    39
--    (0.50 secs, 75,079,912 bytes)
 
-- 1ª definición de sumaMinimaDistanciasIdentidad
-- ==============================================
 
sumaMinimaDistanciasIdentidad :: Int -> Int
sumaMinimaDistanciasIdentidad n =
  sum (minimasDistancias (identity n))
 
-- 2ª definición de sumaMinimaDistanciasIdentidad
-- ==============================================
 
sumaMinimaDistanciasIdentidad2 :: Int -> Int
sumaMinimaDistanciasIdentidad2 n =
  n*(n^2-1) `div` 3
 
-- Equivalencia de las definiciones de sumaMinimaDistanciasIdentidad
-- =================================================================
 
-- La propiedad es
prop_MinimaDistanciasIdentidad :: Positive Int -> Bool
prop_MinimaDistanciasIdentidad (Positive n) =
  sumaMinimaDistanciasIdentidad n == sumaMinimaDistanciasIdentidad2 n
 
-- La comprobación es
--    λ> quickCheckWith (stdArgs {maxSize=50}) prop_MinimaDistanciasIdentidad
--    +++ OK, passed 100 tests.
 
-- Comparación de eficiencia de sumaMinimaDistanciasIdentidad
-- ==========================================================
 
-- La comparación es
--    λ> sumaMinimaDistanciasIdentidad 50
--    41650
--    (0.24 secs, 149,395,744 bytes)
--    λ> sumaMinimaDistanciasIdentidad 100
--    333300
--    (1.98 secs, 1,294,676,272 bytes)
--    λ> sumaMinimaDistanciasIdentidad 200
--    2666600
--    (17.96 secs, 11,094,515,016 bytes)
--    
--    λ> sumaMinimaDistanciasIdentidad2 50
--    41650
--    (0.00 secs, 126,944 bytes)
--    λ> sumaMinimaDistanciasIdentidad2 100
--    333300
--    (0.00 secs, 126,872 bytes)
--    λ> sumaMinimaDistanciasIdentidad2 200
--    2666600
--    (0.00 secs, 131,240 bytes)
--
-- Resumidamente, el tiempo es
--
--    +-----+---------+--------+
--    |   n | 1ª def. | 2ª def |
--    +-----+---------+--------+
--    |  50 |  0.24   | 0.00   |
--    | 100 |  1.98   | 0.00   |
--    | 200 | 17.96   | 0.00   | 
--    +-----+---------+--------+

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Diagonales invertidas

Definir la función

   diagonalesInvertidas :: Matrix a -> Matrix a

tal que (diagonalesInvertidas q) es la matriz obtenida invirtiendo el orden de los elementos de la diagonal principal y de la diagonal secundaria de q. Por ejemplo,

   λ> fromList 5 5 [1..]
   ┌                ┐
   │  1  2  3  4  5 │
   │  6  7  8  9 10 │
   │ 11 12 13 14 15 │
   │ 16 17 18 19 20 │
   │ 21 22 23 24 25 │
   └                ┘
   λ> diagonalesInvertidas (fromList 5 5 [1..])
   ┌                ┐
   │ 25  2  3  4 21 │
   │  6 19  8 17 10 │
   │ 11 12 13 14 15 │
   │ 16  9 18  7 20 │
   │  5 22 23 24  1 │
   └                ┘
   λ> fromList 3 3 ['a','b'..]
   ┌             ┐
   │ 'a' 'b' 'c' │
   │ 'd' 'e' 'f' │
   │ 'g' 'h' 'i' │
   └             ┘
   λ> diagonalesInvertidas (fromList 3 3 ['a','b'..])
   ┌             ┐
   │ 'i' 'b' 'g' │
   │ 'd' 'e' 'f' │
   │ 'c' 'h' 'a' │
   └             ┘
import Data.Matrix
 
diagonalesInvertidas :: Matrix a -> Matrix a
diagonalesInvertidas q = matrix n n f
  where n = nrows q
        f (i,j) | i == j     = q ! (n + 1 - i, n + 1 - i)
                | i+j == n+1 = q ! (j,i)
                | otherwise  = q ! (i,j)

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Soluciones

Pensamiento

“No estamos muy contentos cuando nos vemos obligados a aceptar una verdad matemática en virtud de una complicada cadena de conclusiones formales y cálculos, que atravesamos a ciegas, eslabón por eslabón, sintiendo nuestro camino por el tacto. Queremos primero una visión general del objetivo y del camino; queremos entender la idea de la prueba, el contexto más profundo.”

Hermann Weyl.