Menu Close

Etiqueta: nrows

Camino de máxima suma en una matriz

Los caminos desde el extremo superior izquierdo (posición (1,1)) hasta el extremo inferior derecho (posición (3,4)) en la matriz

   (  1  6 11  2 )
   (  7 12  3  8 )
   (  3  8  4  9 )

moviéndose en cada paso una casilla hacia abajo o hacia la derecha, son los siguientes:

   1, 7,  3, 8, 4, 9
   1, 7, 12, 8, 4, 9
   1, 7, 12, 3, 4, 9
   1, 7, 12, 3, 8, 9
   1, 6, 12, 8, 4, 9
   1, 6, 12, 3, 4, 9
   1, 6, 12, 3, 8, 9
   1, 6, 11, 3, 4, 9
   1, 6, 11, 3, 8, 9
   1, 6, 11, 2, 8, 9

Las sumas de los caminos son 32, 41, 36, 40, 40, 35, 39, 34, 38 y 37, respectivamente. El camino de máxima suma es el segundo (1, 7, 12, 8, 4, 9) que tiene una suma de 41.

Definir la función

   caminoMaxSuma :: Matrix Int -> [Int]

tal que (caminoMaxSuma m) es un camino de máxima suma en la matriz m desde el extremo superior izquierdo hasta el extremo inferior derecho, moviéndose en cada paso una casilla hacia abajo o hacia la derecha. Por ejemplo,

   λ> caminoMaxSuma (fromLists [[1,6,11,2],[7,12,3,8],[3,8,4,9]])
   [1,7,12,8,4,9]
   λ> sum (caminoMaxSuma (fromList 800 800 [1..]))
   766721999

Nota: Se recomienda usar programación dinámica.

Soluciones

import Data.Matrix
 
-- 1ª definición
-- =============
 
caminoMaxSuma1 :: Matrix Int -> [Int]
caminoMaxSuma1 m =
  head [c | c <- cs, sum c == k] 
  where cs = caminos1 m
        k  = maximum (map sum cs)
 
caminos1 :: Matrix Int -> [[Int]]
caminos1 m =
  map reverse (caminos1Aux m (nf,nc))
  where nf = nrows m
        nc = ncols m
 
-- (caminos1Aux p x) es la lista de los caminos invertidos en la matriz p
-- desde la posición (1,1) hasta la posición x. Por ejemplo,
caminos1Aux :: Matrix Int -> (Int,Int) -> [[Int]]
caminos1Aux m (1,1) = [[m!(1,1)]]
caminos1Aux m (1,j) = [[m!(1,k) | k <- [j,j-1..1]]]
caminos1Aux m (i,1) = [[m!(k,1) | k <- [i,i-1..1]]]
caminos1Aux m (i,j) = [m!(i,j) : xs
                      | xs <- caminos1Aux m (i,j-1) ++
                              caminos1Aux m (i-1,j)]
 
-- 2ª definición
-- =============
 
caminoMaxSuma2 :: Matrix Int -> [Int]
caminoMaxSuma2 m =
  head [c | c <- cs, sum c == k] 
  where cs = caminos2 m
        k  = maximum (map sum cs)
 
caminos2 :: Matrix Int -> [[Int]]
caminos2 m =
  map reverse (matrizCaminos m ! (nrows m, ncols m))
 
matrizCaminos :: Matrix Int -> Matrix [[Int]]
matrizCaminos m = q
  where
    q = matrix (nrows m) (ncols m) f
    f (1,y) = [[m!(1,z) | z <- [y,y-1..1]]]
    f (x,1) = [[m!(z,1) | z <- [x,x-1..1]]]
    f (x,y) = [m!(x,y) : cs | cs <- q!(x-1,y) ++ q!(x,y-1)]  
 
-- 3ª definición (con programación dinámica)
-- =========================================
 
caminoMaxSuma3 :: Matrix Int -> [Int]
caminoMaxSuma3 m = reverse (snd (q ! (nf,nc)))
  where nf = nrows m
        nc = ncols m
        q  = caminoMaxSumaAux m
 
caminoMaxSumaAux :: Matrix Int -> Matrix (Int,[Int])
caminoMaxSumaAux m = q 
  where
    nf = nrows m
    nc = ncols m
    q  = matrix nf nc f
      where
        f (1,1) = (m!(1,1),[m!(1,1)])
        f (1,j) = (k + m!(1,j), m!(1,j):xs)
          where (k,xs) = q!(1,j-1)
        f (i,1) = (k + m!(i,1), m!(i,1):xs)
          where (k,xs) = q!(i-1,1)        
        f (i,j) | k1 > k2   = (k1 + m!(i,j), m!(i,j):xs)
                | otherwise = (k2 + m!(i,j), m!(i,j):ys)
          where (k1,xs) = q!(i,j-1)
                (k2,ys) = q!(i-1,j)
 
-- Comparación de eficiencia
-- -------------------------
 
--    λ> length (caminoMaxSuma1 (fromList 11 11 [1..]))
--    21
--    (10.00 secs, 1,510,120,328 bytes)
--    λ> length (caminoMaxSuma2 (fromList 11 11 [1..]))
--    21
--    (3.84 secs, 745,918,544 bytes)
--    λ> length (caminoMaxSuma3 (fromList 11 11 [1..]))
--    21
--    (0.01 secs, 0 bytes)

Máximo de las sumas de los caminos en una matriz

Los caminos desde el extremo superior izquierdo (posición (1,1)) hasta el extremo inferior derecho (posición (3,4)) en la matriz

   (  1  6 11  2 )
   (  7 12  3  8 )
   (  3  8  4  9 )

moviéndose en cada paso una casilla hacia abajo o hacia la derecha, son los siguientes:

   1, 7,  3, 8, 4, 9
   1, 7, 12, 8, 4, 9
   1, 7, 12, 3, 4, 9
   1, 7, 12, 3, 8, 9
   1, 6, 12, 8, 4, 9
   1, 6, 12, 3, 4, 9
   1, 6, 12, 3, 8, 9
   1, 6, 11, 3, 4, 9
   1, 6, 11, 3, 8, 9
   1, 6, 11, 2, 8, 9

Las sumas de los caminos son 32, 41, 36, 40, 40, 35, 39, 34, 38 y 37, respectivamente. El máximo de las suma de los caminos es 41.

Definir la función

   maximaSuma :: Matrix Int -> Int

tal que (maximaSuma m) es el máximo de las sumas de los caminos en la matriz m desde el extremo superior izquierdo hasta el extremo inferior derecho, moviéndose en cada paso una casilla hacia abajo o hacia la derecha. Por ejemplo,

   λ> maximaSuma (fromLists [[1,6,11,2],[7,12,3,8],[3,8,4,9]])
   41
   λ> maximaSuma (fromList 800 800 [1..])
   766721999

Nota: Se recomienda usar programación dinámica.

Soluciones

import Data.Matrix
 
-- 1ª definición
-- =============
 
maximaSuma1 :: Matrix Int -> Int
maximaSuma1 =
  maximum . map sum . caminos1
 
caminos1 :: Matrix Int -> [[Int]]
caminos1 m =
  map reverse (caminos1Aux m (nf,nc))
  where nf = nrows m
        nc = ncols m
 
-- (caminos1Aux p x) es la lista de los caminos invertidos en la matriz p
-- desde la posición (1,1) hasta la posición x. Por ejemplo,
caminos1Aux :: Matrix Int -> (Int,Int) -> [[Int]]
caminos1Aux m (1,1) = [[m!(1,1)]]
caminos1Aux m (1,j) = [[m!(1,k) | k <- [j,j-1..1]]]
caminos1Aux m (i,1) = [[m!(k,1) | k <- [i,i-1..1]]]
caminos1Aux m (i,j) = [m!(i,j) : xs
                      | xs <- caminos1Aux m (i,j-1) ++
                              caminos1Aux m (i-1,j)]
 
-- 2ª definición
-- =============
 
maximaSuma2 :: Matrix Int -> Int
maximaSuma2 =
  maximum . map sum . caminos2
 
caminos2 :: Matrix Int -> [[Int]]
caminos2 m =
  map reverse (matrizCaminos m ! (nrows m, ncols m))
 
matrizCaminos :: Matrix Int -> Matrix [[Int]]
matrizCaminos m = q
  where
    q = matrix (nrows m) (ncols m) f
    f (1,y) = [[m!(1,z) | z <- [y,y-1..1]]]
    f (x,1) = [[m!(z,1) | z <- [x,x-1..1]]]
    f (x,y) = [m!(x,y) : cs | cs <- q!(x-1,y) ++ q!(x,y-1)]  
 
-- 3ª definicion (por recursión, sin calcular el camino)
-- =====================================================
 
maximaSuma3 :: Matrix Int -> Int
maximaSuma3 m = maximaSuma3Aux m (nf,nc)
  where nf = nrows m
        nc = ncols m
 
-- (maximaSuma3Aux m p) calcula la suma máxima de un camino hasta la
-- posición p. Por ejemplo,
--    λ> maximaSuma3Aux (fromLists [[1,6,11,2],[7,12,3,8],[3,8,4,9]]) (3,4)
--    41
--    λ> maximaSuma3Aux (fromLists [[1,6,11,2],[7,12,3,8],[3,8,4,9]]) (3,3)
--    32
--    λ> maximaSuma3Aux (fromLists [[1,6,11,2],[7,12,3,8],[3,8,4,9]]) (2,4)
--    31
maximaSuma3Aux :: Matrix Int -> (Int,Int) -> Int
maximaSuma3Aux m (1,1) = m ! (1,1)
maximaSuma3Aux m (1,j) = maximaSuma3Aux m (1,j-1) + m ! (1,j)
maximaSuma3Aux m (i,1) = maximaSuma3Aux m (i-1,1) + m ! (i,1)
maximaSuma3Aux m (i,j) =
  max (maximaSuma3Aux m (i,j-1)) (maximaSuma3Aux m (i-1,j)) + m ! (i,j)
 
-- 4ª solución (mediante programación dinámica)
-- ============================================
 
maximaSuma4 :: Matrix Int -> Int
maximaSuma4 m = q ! (nf,nc)
  where nf = nrows m
        nc = ncols m
        q  = matrizMaximaSuma m
 
-- (matrizMaximaSuma m) es la matriz donde en cada posición p se
-- encuentra el máxima de las sumas de los caminos desde (1,1) a p en la
-- matriz m. Por ejemplo,   
--    λ> matrizMaximaSuma (fromLists [[1,6,11,2],[7,12,3,8],[3,8,4,9]]) 
--    (  1  7 18 20 )
--    (  8 20 23 31 )
--    ( 11 28 32 41 )
matrizMaximaSuma :: Matrix Int -> Matrix Int
matrizMaximaSuma m = q 
  where nf = nrows m
        nc = ncols m
        q  = matrix nf nc f
          where  f (1,1) = m ! (1,1)
                 f (1,j) = q ! (1,j-1) + m ! (1,j)
                 f (i,1) = q ! (i-1,1) + m ! (i,1)
                 f (i,j) = max (q ! (i,j-1)) (q ! (i-1,j)) + m ! (i,j)
 
-- Comparación de eficiencia
-- =========================
 
--    λ> maximaSuma1 (fromList 8 8 [1..])
--    659
--    (0.11 secs, 31,853,136 bytes)
--    λ> maximaSuma1a (fromList 8 8 [1..])
--    659
--    (0.09 secs, 19,952,640 bytes)
-- 
--    λ> maximaSuma1 (fromList 10 10 [1..])
--    1324
--    (2.25 secs, 349,722,744 bytes)
--    λ> maximaSuma2 (fromList 10 10 [1..])
--    1324
--    (0.76 secs, 151,019,296 bytes)
--    
--    λ> maximaSuma2 (fromList 11 11 [1..])
--    1781
--    (3.02 secs, 545,659,632 bytes)
--    λ> maximaSuma3 (fromList 11 11 [1..])
--    1781
--    (1.57 secs, 210,124,912 bytes)
--    
--    λ> maximaSuma3 (fromList 12 12 [1..])
--    2333
--    (5.60 secs, 810,739,032 bytes)
--    λ> maximaSuma4 (fromList 12 12 [1..])
--    2333
--    (0.01 secs, 23,154,776 bytes)

Caminos en una matriz

Los caminos desde el extremo superior izquierdo (posición (1,1)) hasta el extremo inferior derecho (posición (3,4)) en la matriz

   (  1  6 11  2 )
   (  7 12  3  8 )
   (  3  8  4  9 )

moviéndose en cada paso una casilla hacia abajo o hacia la derecha, son los siguientes:

   1, 7,  3, 8, 4, 9
   1, 7, 12, 8, 4, 9
   1, 7, 12, 3, 4, 9
   1, 7, 12, 3, 8, 9
   1, 6, 12, 8, 4, 9
   1, 6, 12, 3, 4, 9
   1, 6, 12, 3, 8, 9
   1, 6, 11, 3, 4, 9
   1, 6, 11, 3, 8, 9
   1, 6, 11, 2, 8, 9

Definir la función

   caminos :: Matrix Int -> [[Int]]

tal que (caminos m) es la lista de los caminos en la matriz m desde el extremo superior izquierdo hasta el extremo inferior derecho, moviéndose en cada paso una casilla hacia abajo o hacia la derecha. Por ejemplo,

   λ> caminos (fromLists [[1,6,11,2],[7,12,3,8],[3,8,4,9]])
   [[1,7, 3,8,4,9],
    [1,7,12,8,4,9],
    [1,7,12,3,4,9],
    [1,7,12,3,8,9],
    [1,6,12,8,4,9],
    [1,6,12,3,4,9],
    [1,6,12,3,8,9],
    [1,6,11,3,4,9],
    [1,6,11,3,8,9],
    [1,6,11,2,8,9]]
   λ> length (caminos (fromList 12 13 [1..]))
   1352078

Nota: Se recomienda usar programación dinámica.

Soluciones

import Data.Matrix
 
-- 1ª definición de caminos (por recursión)
-- ----------------------------------------
 
caminos1 :: Matrix Int -> [[Int]]
caminos1 a = aux (1,1)
  where
    aux (i,j)
      | i == m           = [[a!(i,k) | k <- [j..n]]]
      | j == n           = [[a!(k,j) | k <- [i..m]]]
      | otherwise        = [a!(i,j) : cs | cs <- aux (i+1,j) ++ aux (i,j+1)]
      where m = nrows a
            n = ncols a
 
-- 2ª solución (mediante programación dinámica)
-- --------------------------------------------
 
caminos2 :: Matrix Int -> [[Int]]
caminos2 a = q ! (1,1)
  where
    q = matrix m n f
    m = nrows a
    n = ncols a
    f (i,j) | i == m    = [[a!(i,k) | k <- [j..n]]]
            | j == n    = [[a!(k,j) | k <- [i..m]]]
            | otherwise = [a!(i,j) : cs | cs <- q!(i+1,j) ++ q!(i,j+1)]  
 
-- 3ª solución
-- ===========
 
caminos3 :: Matrix Int -> [[Int]]
caminos3 a
  | m == 1 || n == 1 = [toList a]
  | otherwise = map (a ! (1,1):) (caminos3 (submatrix 2 m 1 n a) ++
                                  caminos3 (submatrix 1 m 2 n a)) 
  where m = nrows a
        n = ncols a
 
-- Comparación de eficiencia
-- -------------------------
 
--    λ> length (caminos1 (fromList 11 11 [1..]))
--    184756
--    (4.15 secs, 738,764,712 bytes)
--    λ> length (caminos2 (fromList 11 11 [1..]))
--    184756
--    (0.74 secs, 115,904,952 bytes)
--    λ> length (caminos3 (fromList 11 11 [1..]))
--    184756
--    (2.22 secs, 614,472,136 bytes)

Matriz de mínimas distancias

Definir las funciones

   minimasDistancias             :: Matrix Int -> Matrix Int
   sumaMinimaDistanciasIdentidad :: Int -> Int

tales que

  • (mininasDistancias a) es la matriz de las mínimas distancias de cada elemento de a hasta alcanzar un 1 donde un paso es un movimiento hacia la izquierda, derecha, arriba o abajo. Por ejemplo,
     λ> minimasDistancias (fromLists [[0,1,1],[0,0,1]])
     ( 1 0 0 )
     ( 2 1 0 )
     λ> minimasDistancias (fromLists [[0,0,1],[1,0,0]])
     ( 1 1 0 )
     ( 0 1 1 )
     λ> minimasDistancias (identity 5)
     ( 0 1 2 3 4 )
     ( 1 0 1 2 3 )
     ( 2 1 0 1 2 )
     ( 3 2 1 0 1 )
     ( 4 3 2 1 0 )
  • (sumaMinimaDistanciasIdentidad n) es la suma de los elementos de la matriz de las mínimas distancias correspondiente a la matriz identidad de orden n. Por ejemplo,
     sumaMinimaDistanciasIdentidad 5       ==  40
     sumaMinimaDistanciasIdentidad (10^2)  ==  333300
     sumaMinimaDistanciasIdentidad (10^4)  ==  333333330000
     sumaMinimaDistanciasIdentidad (10^6)  ==  333333333333000000

Soluciones

import Data.Matrix     
import Data.Maybe      
import Test.QuickCheck 
 
-- 1ª definición de minimasDistancias
-- ==================================
 
minimasDistancias :: Matrix Int -> Matrix Int
minimasDistancias a = 
  matrix (nrows a) (ncols a) (\(i,j) -> minimaDistancia (i,j) a) 
 
minimaDistancia :: (Int,Int) -> Matrix Int -> Int
minimaDistancia (a,b) p =
  minimum [distancia (a,b) (c,d) | (c,d) <- unos p]
 
unos :: Matrix Int -> [(Int,Int)]
unos p = [(i,j) | i <- [1..nrows p]
                , j <- [1..ncols p]
                , p ! (i,j) == 1]
 
distancia :: (Int,Int) -> (Int,Int) -> Int
distancia (a,b) (c,d) = abs (c - a) + abs (d - b)
 
-- 2ª definición de minimasDistancias
-- ==================================
 
minimasDistancias2 :: Matrix Int -> Matrix Int
minimasDistancias2 a = fmap fromJust (aux (matrizInicial a))
  where aux b | Nothing `elem` c = aux c
              | otherwise        = c
          where c = propagacion b
 
-- (matrizInicial a) es la matriz que tiene (Just 0) en los elementos de
-- a iguales a 1 y Nothing en los restantes. Por ejemplo,
--    λ> matrizInicial (fromLists [[0,0,1],[1,0,0]])
--    ( Nothing Nothing  Just 0 )
--    (  Just 0 Nothing Nothing )
matrizInicial :: Matrix Int -> Matrix (Maybe Int)
matrizInicial a = matrix m n f
  where m = nrows a
        n = ncols a
        f (i,j) | a ! (i,j) == 1 = Just 0
                | otherwise      = Nothing
 
-- (propagacion a) es la matriz obtenida cambiando los elementos Nothing
-- de a por el siguiente del mínimo de los valores de sus vecinos. Por
-- ejemplo,
--    λ> propagacion (fromLists [[0,1,1],[0,0,1]])
--    (  Just 1  Just 0  Just 0 )
--    ( Nothing  Just 1  Just 0 )
--    
--    λ> propagacion it
--    ( Just 1 Just 0 Just 0 )
--    ( Just 2 Just 1 Just 0 )
propagacion :: Matrix (Maybe Int) -> Matrix (Maybe Int)
propagacion a = matrix m n f
  where
    m = nrows a
    n = ncols a
    f (i,j) | isJust x  = x
            | otherwise = siguiente (minimo (valoresVecinos a (i,j)))
      where x = a ! (i,j)
 
-- (valoresVecinos a p) es la lista de los valores de los vecinos la
-- posición p en la matriz a. Por ejemplo,             
--    λ> a = fromList 3 4 [1..]
--    λ> a
--    (  1  2  3  4 )
--    (  5  6  7  8 )
--    (  9 10 11 12 )
--    
--    λ> valoresVecinos a (1,1)
--    [5,2]
--    λ> valoresVecinos a (2,3)
--    [3,11,6,8]
--    λ> valoresVecinos a (2,4)
--    [4,12,7]
valoresVecinos :: Matrix a -> (Int,Int) -> [a]
valoresVecinos a (i,j) = [a ! (k,l) | (k,l) <- vecinos m n (i,j)]
  where m = nrows a
        n = ncols a
 
-- (vecinos m n p) es la lista de las posiciones vecinas de la posición
-- p en la matriz a; es decir, los que se encuentran a su izquierda,
-- derecha, arriba o abajo. por ejemplo,
--    vecinos 3 4 (1,1)  ==  [(2,1),(1,2)]
--    vecinos 3 4 (2,3)  ==  [(1,3),(3,3),(2,2),(2,4)]
--    vecinos 3 4 (2,4)  ==  [(1,4),(3,4),(2,3)]
vecinos :: Int -> Int -> (Int,Int) -> [(Int,Int)]
vecinos m n (i,j) = [(i - 1,j)     | i > 1] ++
                    [(i + 1,j)     | i < m] ++
                    [(i,    j - 1) | j > 1] ++
                    [(i,    j + 1) | j < n]
 
-- (minimo xs) es el mínimo de la lista de valores opcionales xs
-- (considerando Nothing como el mayor elemento). Por ejemplo,
--    minimo [Just 3, Nothing, Just 2]  ==  Just 2
minimo :: [Maybe Int] -> Maybe Int
minimo = foldr1 minimo2
 
-- (minimo2 x y) es el mínimo de los valores opcionales x e y
-- (considerando Nothing como el mayor elemento). Por ejemplo,
--    minimo2 (Just 3) (Just 2)  ==  Just 2
--    minimo2 (Just 1) (Just 2)  ==  Just 1
--    minimo2 (Just 1) Nothing   ==  Just 1
--    minimo2 Nothing (Just 2)   ==  Just 2
--    minimo2 Nothing Nothing    ==  Nothing
minimo2 :: Maybe Int -> Maybe Int -> Maybe Int
minimo2 (Just x) (Just y) = Just (min x y)
minimo2 Nothing  (Just y) = Just y
minimo2 (Just x) Nothing  = Just x
minimo2 Nothing  Nothing  = Nothing
 
-- (siguiente x) es el siguiente elemento del opcional x (considerando
-- Nothing como el infinito). Por ejemplo, 
--    siguiente (Just 3)  ==  Just 4
--    siguiente Nothing  ==  Nothing
siguiente :: Maybe Int -> Maybe Int
siguiente (Just x) = Just (1 + x)
siguiente Nothing  = Nothing
 
-- Comparación de eficiencia
-- =========================
 
-- La comparación es
--    λ> maximum (minimasDistancias (identity 40))
--    39
--    (3.85 secs, 654,473,496 bytes)
--    λ> maximum (minimasDistancias2 (identity 40))
--    39
--    (0.50 secs, 75,079,912 bytes)
 
-- 1ª definición de sumaMinimaDistanciasIdentidad
-- ==============================================
 
sumaMinimaDistanciasIdentidad :: Int -> Int
sumaMinimaDistanciasIdentidad n =
  sum (minimasDistancias (identity n))
 
-- 2ª definición de sumaMinimaDistanciasIdentidad
-- ==============================================
 
sumaMinimaDistanciasIdentidad2 :: Int -> Int
sumaMinimaDistanciasIdentidad2 n =
  n*(n^2-1) `div` 3
 
-- Equivalencia de las definiciones de sumaMinimaDistanciasIdentidad
-- =================================================================
 
-- La propiedad es
prop_MinimaDistanciasIdentidad :: Positive Int -> Bool
prop_MinimaDistanciasIdentidad (Positive n) =
  sumaMinimaDistanciasIdentidad n == sumaMinimaDistanciasIdentidad2 n
 
-- La comprobación es
--    λ> quickCheckWith (stdArgs {maxSize=50}) prop_MinimaDistanciasIdentidad
--    +++ OK, passed 100 tests.
 
-- Comparación de eficiencia de sumaMinimaDistanciasIdentidad
-- ==========================================================
 
-- La comparación es
--    λ> sumaMinimaDistanciasIdentidad 50
--    41650
--    (0.24 secs, 149,395,744 bytes)
--    λ> sumaMinimaDistanciasIdentidad 100
--    333300
--    (1.98 secs, 1,294,676,272 bytes)
--    λ> sumaMinimaDistanciasIdentidad 200
--    2666600
--    (17.96 secs, 11,094,515,016 bytes)
--    
--    λ> sumaMinimaDistanciasIdentidad2 50
--    41650
--    (0.00 secs, 126,944 bytes)
--    λ> sumaMinimaDistanciasIdentidad2 100
--    333300
--    (0.00 secs, 126,872 bytes)
--    λ> sumaMinimaDistanciasIdentidad2 200
--    2666600
--    (0.00 secs, 131,240 bytes)
--
-- Resumidamente, el tiempo es
--
--    +-----+---------+--------+
--    |   n | 1ª def. | 2ª def |
--    +-----+---------+--------+
--    |  50 |  0.24   | 0.00   |
--    | 100 |  1.98   | 0.00   |
--    | 200 | 17.96   | 0.00   | 
--    +-----+---------+--------+

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Diagonales invertidas

Definir la función

   diagonalesInvertidas :: Matrix a -> Matrix a

tal que (diagonalesInvertidas q) es la matriz obtenida invirtiendo el orden de los elementos de la diagonal principal y de la diagonal secundaria de q. Por ejemplo,

   λ> fromList 5 5 [1..]
   ┌                ┐
   │  1  2  3  4  5 │
   │  6  7  8  9 10 │
   │ 11 12 13 14 15 │
   │ 16 17 18 19 20 │
   │ 21 22 23 24 25 │
   └                ┘
   λ> diagonalesInvertidas (fromList 5 5 [1..])
   ┌                ┐
   │ 25  2  3  4 21 │
   │  6 19  8 17 10 │
   │ 11 12 13 14 15 │
   │ 16  9 18  7 20 │
   │  5 22 23 24  1 │
   └                ┘
   λ> fromList 3 3 ['a','b'..]
   ┌             ┐
   │ 'a' 'b' 'c' │
   │ 'd' 'e' 'f' │
   │ 'g' 'h' 'i' │
   └             ┘
   λ> diagonalesInvertidas (fromList 3 3 ['a','b'..])
   ┌             ┐
   │ 'i' 'b' 'g' │
   │ 'd' 'e' 'f' │
   │ 'c' 'h' 'a' │
   └             ┘
import Data.Matrix
 
diagonalesInvertidas :: Matrix a -> Matrix a
diagonalesInvertidas q = matrix n n f
  where n = nrows q
        f (i,j) | i == j     = q ! (n + 1 - i, n + 1 - i)
                | i+j == n+1 = q ! (j,i)
                | otherwise  = q ! (i,j)

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Soluciones

Pensamiento

“No estamos muy contentos cuando nos vemos obligados a aceptar una verdad matemática en virtud de una complicada cadena de conclusiones formales y cálculos, que atravesamos a ciegas, eslabón por eslabón, sintiendo nuestro camino por el tacto. Queremos primero una visión general del objetivo y del camino; queremos entender la idea de la prueba, el contexto más profundo.”

Hermann Weyl.

Producto de Kronecker

Si A es una matriz m \times n y B es una matriz p \times q, entonces el producto de Kronecker A \otimes B es la matriz bloque mp \times nq

Más explícitamente, tenemos

Por ejemplo,

Definir la función

   kronecker :: Num t => Matrix t -> Matrix t -> Matrix t

tal que (kronecker a b) es el producto de Kronecker de las matrices a y b. Por ejemplo,

   λ> kronecker (fromLists [[1,2],[3,1]]) (fromLists [[0,3],[2,1]])
   ┌         ┐
   │ 0 3 0 6 │
   │ 2 1 4 2 │
   │ 0 9 0 3 │
   │ 6 3 2 1 │
   └         ┘
   λ> kronecker (fromLists [[1,2],[3,4]]) (fromLists [[2,1],[-1,0],[3,2]])
   ┌             ┐
   │  2  1  4  2 │
   │ -1  0 -2  0 │
   │  3  2  6  4 │
   │  6  3  8  4 │
   │ -3  0 -4  0 │
   │  9  6 12  8 │
   └             ┘
   λ> kronecker (fromLists [[2,1],[-1,0],[3,2]]) (fromLists [[1,2],[3,4]])
   ┌             ┐
   │  2  4  1  2 │
   │  6  8  3  4 │
   │ -1 -2  0  0 │
   │ -3 -4  0  0 │
   │  3  6  2  4 │
   │  9 12  6  8 │
   └             ┘

Soluciones

import Data.Matrix
 
-- 1ª solución
-- ===========
 
kronecker :: Num t => Matrix t -> Matrix t -> Matrix t
kronecker a b =
  matrix (m*p) (n*q) f
  where m = nrows a
        n = ncols a
        p = nrows b
        q = ncols b
        f (i,j) = a !(k+1,r+1) * b!(l+1,s+1)
          where (k,l) = quotRem (i-1) p
                (r,s) = quotRem (j-1) q
 
-- 2ª solución
-- ===========
 
kronecker2 a b = bloqueFila a b (ncols a)
  where
    bloque (i,j) a b = scaleMatrix (a!(i,j)) b
    bloqueFila a b 1 = bloqueColumna 1 a b
    bloqueFila a b n = bloqueFila a b (n-1) <|> bloqueColumna n a b
    bloqueColumna j a b = aux a b (nrows a)
      where aux a b 1 = bloque (1,j) a b
            aux a b n = aux a b (n-1) <-> bloque (n,j) a b
 
-- 3ª solución
-- ===========
 
kronecker3 :: Num t => Matrix t -> Matrix t -> Matrix t
kronecker3 a b =
  foldl1 (<->) [foldl1 (<|>) [scaleMatrix (a!(i,j)) b
                             | j <- [1..ncols b]]
                             | i <- [1..nrows a]]

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang=”haskell”> y otra con </pre>

Pensamiento

“La resolución de problemas es una habilidad práctica como, digamos, la natación. Adquirimos cualquier habilidad práctica por imitación y práctica. Tratando de nadar, imitas lo que otras personas hacen con sus manos y pies para mantener sus cabezas sobre el agua, y, finalmente, aprendes a nadar practicando la natación. Al intentar resolver problemas, hay que observar e imitar lo que hacen otras personas al resolver problemas y, finalmente, se aprende a resolver problemas haciéndolos.”

George Pólya.

Matriz girada 180 grados

Definir la función

   matrizGirada180 :: Matrix a -> Matrix a

tal que (matrizGirada180 p) es la matriz obtenida girando 180 grados la matriz p. Por ejemplo,

   λ> fromList 4 3 [1..]
   (  1  2  3 )
   (  4  5  6 )
   (  7  8  9 )
   ( 10 11 12 )
 
   λ> matrizGirada180 (fromList 4 3 [1..])
   ( 12 11 10 )
   (  9  8  7 )
   (  6  5  4 )
   (  3  2  1 )
 
   λ> fromList 3 4 [1..]
   (  1  2  3  4 )
   (  5  6  7  8 )
   (  9 10 11 12 )
 
   λ> matrizGirada180 (fromList 3 4 [1..])
   ( 12 11 10  9 )
   (  8  7  6  5 )
   (  4  3  2  1 )

Soluciones

import Data.Matrix ( Matrix
                   , (!)
                   , fromList
                   , fromLists
                   , matrix
                   , ncols
                   , nrows
                   , toLists
                   )
 
-- 1ª solución
matrizGirada180 :: Matrix a -> Matrix a
matrizGirada180 p = matrix m n f
  where m       = nrows p
        n       = ncols p
        f (i,j) = p!(m-i+1,n-j+1)
 
-- 2ª solución
matrizGirada180b :: Matrix a -> Matrix a
matrizGirada180b p =
  fromLists (reverse (map reverse (toLists p)))
 
-- 3ª solución
matrizGirada180c :: Matrix a -> Matrix a
matrizGirada180c =
  fromLists . reverse . map reverse . toLists

Pensamiento

Bueno es recordar
las palabras viejas
que han de volver a sonar.

Antonio Machado

Matriz de mínimas distancias

Definir las funciones

   minimasDistancias             :: Matrix Int -> Matrix Int
   sumaMinimaDistanciasIdentidad :: Int -> Int

tales que

  • (mininasDistancias a) es la matriz de las mínimas distancias de cada elemento de a hasta alcanzar un 1 donde un paso es un movimiento hacia la izquierda, derecha, arriba o abajo. Por ejemplo,
     λ> minimasDistancias (fromLists [[0,1,1],[0,0,1]])
     ( 1 0 0 )
     ( 2 1 0 )
     λ> minimasDistancias (fromLists [[0,0,1],[1,0,0]])
     ( 1 1 0 )
     ( 0 1 1 )
     λ> minimasDistancias (identity 5)
     ( 0 1 2 3 4 )
     ( 1 0 1 2 3 )
     ( 2 1 0 1 2 )
     ( 3 2 1 0 1 )
     ( 4 3 2 1 0 )
  • (sumaMinimaDistanciasIdentidad n) es la suma de los elementos de la matriz de las mínimas distancias correspondiente a la matriz identidad de orden n. Por ejemplo,
     sumaMinimaDistanciasIdentidad 5       ==  40
     sumaMinimaDistanciasIdentidad (10^2)  ==  333300
     sumaMinimaDistanciasIdentidad (10^4)  ==  333333330000
     sumaMinimaDistanciasIdentidad (10^6)  ==  333333333333000000

Soluciones

import Data.Matrix
import Data.Maybe (isJust, fromJust)
import Test.QuickCheck
 
-- Definición de minimasDistancias
-- ===============================
 
minimasDistancias :: Matrix Int -> Matrix Int
minimasDistancias a = fmap fromJust (aux (matrizInicial a))
  where aux b | Nothing `elem` c = aux c
              | otherwise        = c
          where c = propagacion b
 
-- (matrizInicial a) es la matriz que tiene (Just 0) en los elementos de
-- a iguales a 1 y Nothing en los restantes. Por ejemplo,
--    λ> matrizInicial (fromLists [[0,0,1],[1,0,0]])
--    ( Nothing Nothing  Just 0 )
--    (  Just 0 Nothing Nothing )
matrizInicial :: Matrix Int -> Matrix (Maybe Int)
matrizInicial a = matrix m n f
  where m = nrows a
        n = ncols a
        f (i,j) | a ! (i,j) == 1 = Just 0
                | otherwise      = Nothing
 
-- (propagacion a) es la matriz obtenida cambiando los elementos Nothing
-- de a por el sigiente del mínomo de los valores de sus vecinos. Por
-- ejemplo,
--    λ> propagacion (fromLists [[0,1,1],[0,0,1]])
--    (  Just 1  Just 0  Just 0 )
--    ( Nothing  Just 1  Just 0 )
--    
--    λ> propagacion it
--    ( Just 1 Just 0 Just 0 )
--    ( Just 2 Just 1 Just 0 )
propagacion :: Matrix (Maybe Int) -> Matrix (Maybe Int)
propagacion a = matrix m n f
  where
    m = nrows a
    n = ncols a
    f (i,j) | isJust x  = x
            | otherwise = siguiente (minimo (valoresVecinos a (i,j)))
      where x = a ! (i,j)
 
-- (valoresVecinos a p) es la lista de los valores de los vecinos la
-- posición p en la matriz a. Por ejemplo,             
--    λ> a = fromList 3 4 [1..]
--    λ> a
--    (  1  2  3  4 )
--    (  5  6  7  8 )
--    (  9 10 11 12 )
--    
--    λ> valoresVecinos a (1,1)
--    [5,2]
--    λ> valoresVecinos a (2,3)
--    [3,11,6,8]
--    λ> valoresVecinos a (2,4)
--    [4,12,7]
valoresVecinos :: Matrix a -> (Int,Int) -> [a]
valoresVecinos a (i,j) = [a ! (k,l) | (k,l) <- vecinos m n (i,j)]
  where m = nrows a
        n = ncols a
 
-- (vecinos m n p) es la lista de las posiciones vecinas de la posición
-- p en la matriz a; es decir, los que se encuentran a su izquierda,
-- derecha, arriba o abajo. por ejemplo,
--    vecinos 3 4 (1,1)  ==  [(2,1),(1,2)]
--    vecinos 3 4 (2,3)  ==  [(1,3),(3,3),(2,2),(2,4)]
--    vecinos 3 4 (2,4)  ==  [(1,4),(3,4),(2,3)]
vecinos :: Int -> Int -> (Int,Int) -> [(Int,Int)]
vecinos m n (i,j) = [(i - 1,j)     | i > 1] ++
                    [(i + 1,j)     | i < m] ++
                    [(i,    j - 1) | j > 1] ++
                    [(i,    j + 1) | j < n]
 
-- (minimo xs) es el mínimo de la lista de valores opcionales xs
-- (considerando Nothing como el mayor elemento). Por ejemplo,
--    minimo [Just 3, Nothing, Just 2]  ==  Just 2
minimo :: [Maybe Int] -> Maybe Int
minimo = foldr1 minimo2
 
-- (minimo2 x y) es el mínimo de los valores opcionales x e y
-- (considerando Nothing como el mayor elemento). Por ejemplo,
--    minimo2 (Just 3) (Just 2)  ==  Just 2
--    minimo2 (Just 1) (Just 2)  ==  Just 1
--    minimo2 (Just 1) Nothing   ==  Just 1
--    minimo2 Nothing (Just 2)   ==  Just 2
--    minimo2 Nothing Nothing    ==  Nothing
minimo2 :: Maybe Int -> Maybe Int -> Maybe Int
minimo2 (Just x) (Just y) = Just (min x y)
minimo2 Nothing  (Just y) = Just y
minimo2 (Just x) Nothing  = Just x
minimo2 Nothing  Nothing  = Nothing
 
-- (siguiente x) es el siguiente elemento del opcional x (considerando
-- Nothing como el infinito). Por ejemplo, 
--    siguiente (Just 3)  ==  Just 4
--    siguiente Nothing  ==  Nothing
siguiente :: Maybe Int -> Maybe Int
siguiente (Just x) = Just (1 + x)
siguiente Nothing  = Nothing
 
-- 1ª definición de sumaMinimaDistanciasIdentidad
-- ==============================================
 
sumaMinimaDistanciasIdentidad :: Int -> Int
sumaMinimaDistanciasIdentidad n =
  sum (minimasDistancias (identity n))
 
-- 2ª definición de sumaMinimaDistanciasIdentidad
-- ==============================================
 
sumaMinimaDistanciasIdentidad2 :: Int -> Int
sumaMinimaDistanciasIdentidad2 n =
  n*(n^2-1) `div` 3
 
-- Equivalencia de las definiciones de sumaMinimaDistanciasIdentidad
-- =================================================================
 
-- La propiedad es
prop_MinimaDistanciasIdentidad :: Positive Int -> Bool
prop_MinimaDistanciasIdentidad (Positive n) =
  sumaMinimaDistanciasIdentidad n == sumaMinimaDistanciasIdentidad2 n
 
-- La comprobación es
--    λ> quickCheckWith (stdArgs {maxSize=50}) prop_MinimaDistanciasIdentidad
--    +++ OK, passed 100 tests.
 
-- Comparación de eficiencia
-- =========================
 
-- La comparación es
--    λ> sumaMinimaDistanciasIdentidad 50
--    41650
--    (0.24 secs, 149,395,744 bytes)
--    λ> sumaMinimaDistanciasIdentidad 100
--    333300
--    (1.98 secs, 1,294,676,272 bytes)
--    λ> sumaMinimaDistanciasIdentidad 200
--    2666600
--    (17.96 secs, 11,094,515,016 bytes)
--    
--    λ> sumaMinimaDistanciasIdentidad2 50
--    41650
--    (0.00 secs, 126,944 bytes)
--    λ> sumaMinimaDistanciasIdentidad2 100
--    333300
--    (0.00 secs, 126,872 bytes)
--    λ> sumaMinimaDistanciasIdentidad2 200
--    2666600
--    (0.00 secs, 131,240 bytes)
--
-- Resumidamente, el tiempo es
--
--    +-----+---------+--------+
--    |   n | 1ª def. | 2ª def |
--    +-----+---------+--------+
--    |  50 |  0.24   | 0.00   |
--    | 100 |  1.98   | 0.00   |
--    | 200 | 17.96   | 0.00   | 
--    +-----+---------+--------+

Pensamiento

La primavera ha venido.
Nadie sabe como ha sido.

Antonio Machado

Diagonales invertidas

Definir la función

   diagonalesInvertidas :: Matrix a -> Matrix a

tal que (diagonalesInvertidas q) es la matriz obtenida invirtiendo el
orden de los elementos de la diagonal principal y de la diagonal
secundaria de q. Por ejemplo,

   λ> fromList 5 5 [1..]
   ┌                ┐
   │  1  2  3  4  5 │
   │  6  7  8  9 10 │
   │ 11 12 13 14 15 │
   │ 16 17 18 19 20 │
   │ 21 22 23 24 25 │
   └                ┘
   λ> diagonalesInvertidas (fromList 5 5 [1..])
   ┌                ┐
   │ 25  2  3  4 21 │
   │  6 19  8 17 10 │
   │ 11 12 13 14 15 │
   │ 16  9 18  7 20 │
   │  5 22 23 24  1 │
   └                ┘
   λ> fromList 3 3 ['a','b'..]
   ┌             ┐
   │ 'a' 'b' 'c' │
   │ 'd' 'e' 'f' │
   │ 'g' 'h' 'i' │
   └             ┘
   λ> diagonalesInvertidas (fromList 3 3 ['a','b'..])
   ┌             ┐
   │ 'i' 'b' 'g' │
   │ 'd' 'e' 'f' │
   │ 'c' 'h' 'a' │
   └             ┘

Soluciones

import Data.Matrix
 
diagonalesInvertidas :: Matrix a -> Matrix a
diagonalesInvertidas q = matrix n n f
  where n = nrows q
        f (i,j) | i == j     = q ! (n + 1 - i, n + 1 - i)
                | i+j == n+1 = q ! (j,i)
                | otherwise  = q ! (i,j)

Pensamiento

Despertad, cantores:
acaben los ecos,
empiecen las voces.

Antonio Machado

Camino de máxima suma en una matriz

Los caminos desde el extremo superior izquierdo (posición (1,1)) hasta el extremo inferior derecho (posición (3,4)) en la matriz

   (  1  6 11  2 )
   (  7 12  3  8 )
   (  3  8  4  9 )

moviéndose en cada paso una casilla hacia abajo o hacia la derecha, son los siguientes:

   1, 7,  3, 8, 4, 9
   1, 7, 12, 8, 4, 9
   1, 7, 12, 3, 4, 9
   1, 7, 12, 3, 8, 9
   1, 6, 12, 8, 4, 9
   1, 6, 12, 3, 4, 9
   1, 6, 12, 3, 8, 9
   1, 6, 11, 3, 4, 9
   1, 6, 11, 3, 8, 9
   1, 6, 11, 2, 8, 9

Las sumas de los caminos son 32, 41, 36, 40, 40, 35, 39, 34, 38 y 37, respectivamente. El camino de máxima suma es el segundo (1, 7, 12, 8, 4, 9) que tiene una suma de 41.

Definir la función

   caminoMaxSuma :: Matrix Int -> [Int]

tal que (caminoMaxSuma m) es un camino de máxima suma en la matriz m desde el extremo superior izquierdo hasta el extremo inferior derecho, moviéndose en cada paso una casilla hacia abajo o hacia la derecha. Por ejemplo,

   λ> caminoMaxSuma (fromLists [[1,6,11,2],[7,12,3,8],[3,8,4,9]])
   [1,7,12,8,4,9]
   λ> sum (caminoMaxSuma (fromList 800 800 [1..]))
   766721999

Soluciones

import Data.Matrix
import Test.QuickCheck
 
-- 1ª definición
-- =============
 
caminoMaxSuma1 :: Matrix Int -> [Int]
caminoMaxSuma1 m =
  head [c | c <- cs, sum c == k] 
  where cs = caminos1 m
        k  = maximum (map sum cs)
 
caminos1 :: Matrix Int -> [[Int]]
caminos1 m =
  map reverse (caminos1Aux m (nf,nc))
  where nf = nrows m
        nc = ncols m
 
-- (caminos1Aux p x) es la lista de los caminos invertidos en la matriz p
-- desde la posición (1,1) hasta la posición x. Por ejemplo,
caminos1Aux :: Matrix Int -> (Int,Int) -> [[Int]]
caminos1Aux m (1,1) = [[m!(1,1)]]
caminos1Aux m (1,j) = [[m!(1,k) | k <- [j,j-1..1]]]
caminos1Aux m (i,1) = [[m!(k,1) | k <- [i,i-1..1]]]
caminos1Aux m (i,j) = [m!(i,j) : xs
                      | xs <- caminos1Aux m (i,j-1) ++
                              caminos1Aux m (i-1,j)]
 
-- 2ª definición
-- =============
 
caminoMaxSuma2 :: Matrix Int -> [Int]
caminoMaxSuma2 m =
  head [c | c <- cs, sum c == k] 
  where cs = caminos2 m
        k  = maximum (map sum cs)
 
caminos2 :: Matrix Int -> [[Int]]
caminos2 m =
  map reverse (matrizCaminos m ! (nrows m, ncols m))
 
matrizCaminos :: Matrix Int -> Matrix [[Int]]
matrizCaminos m = q
  where
    q = matrix (nrows m) (ncols m) f
    f (1,y) = [[m!(1,z) | z <- [y,y-1..1]]]
    f (x,1) = [[m!(z,1) | z <- [x,x-1..1]]]
    f (x,y) = [m!(x,y) : cs | cs <- q!(x-1,y) ++ q!(x,y-1)]  
 
-- 3ª definición (con programación dinámica)
-- =========================================
 
caminoMaxSuma3 :: Matrix Int -> [Int]
caminoMaxSuma3 m = reverse (snd (q ! (nf,nc)))
  where nf = nrows m
        nc = ncols m
        q  = caminoMaxSumaAux m
 
caminoMaxSumaAux :: Matrix Int -> Matrix (Int,[Int])
caminoMaxSumaAux m = q 
  where
    nf = nrows m
    nc = ncols m
    q  = matrix nf nc f
      where
        f (1,1) = (m!(1,1),[m!(1,1)])
        f (1,j) = (k + m!(1,j), m!(1,j):xs)
          where (k,xs) = q!(1,j-1)
        f (i,1) = (k + m!(i,1), m!(i,1):xs)
          where (k,xs) = q!(i-1,1)        
        f (i,j) | k1 > k2   = (k1 + m!(i,j), m!(i,j):xs)
                | otherwise = (k2 + m!(i,j), m!(i,j):ys)
          where (k1,xs) = q!(i,j-1)
                (k2,ys) = q!(i-1,j)
 
-- Equivalencia de las definiciones
-- ================================
 
-- El generador es
instance Arbitrary a => Arbitrary (Matrix a) where
  arbitrary =  do
    m <- choose (1,7)
    n <- choose (1,7)
    xs <- Test.QuickCheck.vector (n*m)
    return (fromList m n xs)
 
 
-- Por ejemplo,
--    λ> sample' (arbitrary :: Gen (Matrix Int))
--    [( 0 )
--     ( 0 )
--     ( 0 )
--     ( 0 )
--    ,(  1  2 )
--     ( -1  1 )
--     ( -1 -2 )
--     (  1 -1 )
--     (  1  0 )
--     (  2  0 )
--     (  2 -2 )
--    ,( -4  4 -2 )
--     ( -2  0 -2 )
--     (  0 -1 -2 )
--     ( -4 -1  2 )
--    ,( -2  7 -3  1 -5 -3  5 )
--     (  0  2  7 -1 -5  7 -6 )
--     (  1  7 -8  1  6 -7  5 )
--     ( -4  7 -2 -7 -5  5 -8 )
--    ...
 
-- La propiedad es
prop_caminoMaxSuma :: Matrix Int -> Bool
prop_caminoMaxSuma m =
  x1 == x2 && x2 == x3
  where x1 = sum (caminoMaxSuma1 m)
        x2 = sum (caminoMaxSuma2 m)
        x3 = sum (caminoMaxSuma1 m)
 
-- La comprobación es
--    λ> quickCheck prop_caminoMaxSuma
--    +++ OK, passed 100 tests.
 
 
-- Comparación de eficiencia
-- -------------------------
 
--    λ> length (caminoMaxSuma1 (fromList 11 11 [1..]))
--    21
--    (10.00 secs, 1,510,120,328 bytes)
--    λ> length (caminoMaxSuma2 (fromList 11 11 [1..]))
--    21
--    (3.84 secs, 745,918,544 bytes)
--    λ> length (caminoMaxSuma3 (fromList 11 11 [1..]))
--    21
--    (0.01 secs, 0 bytes)

Pensamiento

Caminante, no hay camino,
sino estelas en la mar.

Antonio Machado