Caminos en una retícula

El problema de los caminos en una retícula consiste en, dada una retícula rectangular con m filas y n columnas, determinar todos los caminos para ir desde el vértice inferior izquierdo hasta el vértice superior derecho donde los movimientos permitidos son mover hacia el siguiente vértice a la derecha o arriba.

Por ejemplo, en la siguiente retícula un posible camino es el indicado en rojo.
C

Para representar los caminos se definen los siguientes tipos de datos:

Por tanto, el camino de la figura anterior se representa por la lista [D,D,A,D,A].

Definir las funciones

tales que

  • (caminos m n) es la lista de los caminos en una retícula rectangular con m filas y n columnas. Por ejemplo,

  • (nCaminos m n) es el número de los caminos en una retícula rectangular con m filas y n columnas. Por ejemplo,

Soluciones

Densidad de números no monótonos

Un número entero positivo se dice que es

  • creciente si cada uno de sus dígitos es menor o igual que el que está a su derecha; por ejemplo, 134479.
  • decreciente si cada uno de sus dígitos es menor o igual que el que está a su derecha; por ejemplo, 664210.
  • no monótono si no es creciente ni decreciente; por ejemplo, 155369.

Para cada entero positivo n, la densidad números no monótonos hasta n es el cociente entre la cantidad de n números no monótonos entre menores o iguales que n y el número n. Por ejemplo, hasta 150 hay 19 números no monótonos (101, 102, 103, 104, 105, 106, 107, 108, 109, 120, 121, 130, 131, 132, 140, 141, 142, 143 y 150); por tanto, la densidad hasta 150 es 19/150 = 0.12666667

Definir las siguientes funciones

tales que

  • (densidad n) es la densidad de números no monótonos hasta n. Por ejemplo,

  • (menorConDensidadMayor x) es el menor número n tal que la densidad de números no monótonos hasta n es mayor o igual que x. Por ejemplo,

Soluciones

Operaciones con series de potencias

Una serie de potencias es una serie de la forma

Las series de potencias se pueden representar mediante listas
infinitas. Por ejemplo, la serie de la función exponencial es

y se puede representar por [1, 1, 1/2, 1/6, 1/24, 1/120, …]

Las operaciones con series se pueden ver como una generalización de las de los polinomios.

En lo que sigue, usaremos el tipo (Serie a) para representar las series de potencias con coeficientes en a y su definición es

Definir las siguientes funciones

tales que

  • (opuesta xs) es la opuesta de la serie xs. Por ejemplo,

  • (suma xs ys) es la suma de las series xs e ys. Por ejemplo,

  • (resta xs ys) es la resta de las series xs es ys. Por ejemplo,

  • (producto xs ys) es el producto de las series xs e ys. Por ejemplo,

  • (cociente xs ys) es el cociente de las series xs e ys. Por ejemplo,

  • (derivada xs) es la derivada de la serie xs. Por ejemplo,

  • (integral xs) es la integral de la serie xs. Por ejemplo,

  • expx es la serie de la función exponencial. Por ejemplo,

Soluciones

Raíz entera

Definir la función

tal que (raizEnt x n) es la raíz entera n-ésima de x; es decir, el mayor número entero y tal que y^n <= x. Por ejemplo,

Comprobar con QuickCheck que para todo número natural n,

Soluciones

Soluciones en Maxima

Primo suma de dos cuadrados

Definir la sucesión

cuyos elementos son los números primos que se pueden escribir como sumas de dos cuadrados. Por ejemplo,

En el ejemplo anterior,

  • 13 está en la sucesión porque es primo y 13 = 2²+3².
  • 11 no está en la sucesión porque no se puede escribir como suma de dos cuadrados (en efecto, 11-1=10, 11-2²=7 y 11-3²=2 no son cuadrados).
  • 20 no está en la sucesión porque, aunque es suma de dos cuadrados (20=4²+2²), no es primo.

Soluciones

Referencias