Menu Close

Etiqueta: concat

Espacio de estados del problema de las N reinas

El problema de las N reinas consiste en colocar N reinas en tablero rectangular de dimensiones N por N de forma que no se encuentren más de una en la misma línea: horizontal, vertical o diagonal. Por ejemplo, una solución para el problema de las 4 reinas es

   |---|---|---|---|
   |   | R |   |   |
   |---|---|---|---|
   |   |   |   | R |
   |---|---|---|---|
   | R |   |   |   |
   |---|---|---|---|
   |   |   | R |   |
   |---|---|---|---|

Los estados del problema de las N reinas son los tableros con las reinas colocadas. Inicialmente el tablero está vacío y, en cda paso se coloca una reina en la primera columna en la que aún no hay ninguna reina.

Cada estado se representa por una lista de números que indican las filas donde se han colocado las reinas. Por ejemplo, el tablero anterior se representa por [2,4,1,3].

Usando la librería de árboles Data.Tree, definir las funciones

   arbolReinas :: Int -> Tree [Int]
   nEstados    :: Int -> Int
   soluciones  :: Int -> [[Int]]
   nSoluciones :: Int -> Int

tales que

  • (arbolReinas n) es el árbol de estados para el problema de las n reinas. Por ejemplo,
     λ> putStrLn (drawTree (fmap show (arbolReinas 4)))
     []
     |
     +- [1]
     |  |
     |  +- [3,1]
     |  |
     |  `- [4,1]
     |     |
     |     `- [2,4,1]
     |
     +- [2]
     |  |
     |  `- [4,2]
     |     |
     |     `- [1,4,2]
     |        |
     |        `- [3,1,4,2]
     |
     +- [3]
     |  |
     |  `- [1,3]
     |     |
     |     `- [4,1,3]
     |        |
     |        `- [2,4,1,3]
     |
     `- [4]
        |
        +- [1,4]
        |  |
        |  `- [3,1,4]
        |
        `- [2,4]
 
     λ> putStrLn (drawTree (fmap show (arbolReinas 5)))
     []
     |
     +- [1]
     |  |
     |  +- [3,1]
     |  |  |
     |  |  `- [5,3,1]
     |  |     |
     |  |     `- [2,5,3,1]
     |  |        |
     |  |        `- [4,2,5,3,1]
     |  |
     |  +- [4,1]
     |  |  |
     |  |  `- [2,4,1]
     |  |     |
     |  |     `- [5,2,4,1]
     |  |        |
     |  |        `- [3,5,2,4,1]
     |  |
     |  `- [5,1]
     |     |
     |     `- [2,5,1]
     |
     +- [2]
     |  |
     |  +- [4,2]
     |  |  |
     |  |  `- [1,4,2]
     |  |     |
     |  |     `- [3,1,4,2]
     |  |        |
     |  |        `- [5,3,1,4,2]
     |  |
     |  `- [5,2]
     |     |
     |     +- [1,5,2]
     |     |  |
     |     |  `- [4,1,5,2]
     |     |
     |     `- [3,5,2]
     |        |
     |        `- [1,3,5,2]
     |           |
     |           `- [4,1,3,5,2]
     |
     +- [3]
     |  |
     |  +- [1,3]
     |  |  |
     |  |  `- [4,1,3]
     |  |     |
     |  |     `- [2,4,1,3]
     |  |        |
     |  |        `- [5,2,4,1,3]
     |  |
     |  `- [5,3]
     |     |
     |     `- [2,5,3]
     |        |
     |        `- [4,2,5,3]
     |           |
     |           `- [1,4,2,5,3]
     |
     +- [4]
     |  |
     |  +- [1,4]
     |  |  |
     |  |  +- [3,1,4]
     |  |  |  |
     |  |  |  `- [5,3,1,4]
     |  |  |     |
     |  |  |     `- [2,5,3,1,4]
     |  |  |
     |  |  `- [5,1,4]
     |  |     |
     |  |     `- [2,5,1,4]
     |  |
     |  `- [2,4]
     |     |
     |     `- [5,2,4]
     |        |
     |        `- [3,5,2,4]
     |           |
     |           `- [1,3,5,2,4]
     |
     `- [5]
        |
        +- [1,5]
        |  |
        |  `- [4,1,5]
        |
        +- [2,5]
        |  |
        |  `- [4,2,5]
        |     |
        |     `- [1,4,2,5]
        |        |
        |        `- [3,1,4,2,5]
        |
        `- [3,5]
           |
           `- [1,3,5]
              |
              `- [4,1,3,5]
                 |
                 `- [2,4,1,3,5]
  • (nEstados n) es el número de estados en el problema de las n reinas. Por ejemplo,
     nEstados 4            ==  17
     nEstados 5            ==  54
     map nEstados [0..10]  ==  [1,2,3,6,17,54,153,552,2057,8394,35539]
  • (soluciones n) es la lista de estados que son soluciones del problema de las n reinas. Por ejemplo,
     λ> soluciones 4
     [[3,1,4,2],[2,4,1,3]]
     λ> soluciones 5
     [[4,2,5,3,1],[3,5,2,4,1],[5,3,1,4,2],[4,1,3,5,2],[5,2,4,1,3],
      [1,4,2,5,3],[2,5,3,1,4],[1,3,5,2,4],[3,1,4,2,5],[2,4,1,3,5]]
  • (nSoluciones n) es el número de soluciones del problema de las n reinas. Por ejemplo,
     nSoluciones 4            ==  2
     nSoluciones 5            ==  10
     map nSoluciones [0..10]  ==  [1,1,0,0,2,10,4,40,92,352,724]

Soluciones

import Data.List ((\\))
import Data.Tree
 
-- Definición de arbolReinas
-- =========================
 
arbolReinas :: Int -> Tree [Int]
arbolReinas n = expansion n []
  where
    expansion m xs = Node xs [expansion (m-1) ys | ys <- sucesores n xs]
 
-- (sucesores n xs) es la lista de los sucesores del estado xs en el
-- problema de las n reinas. Por ejemplo,
--    sucesores 4 []       ==  [[1],[2],[3],[4]]
--    sucesores 4 [1]      ==  [[3,1],[4,1]]
--    sucesores 4 [4,1]    ==  [[2,4,1]]
--    sucesores 4 [2,4,1]  ==  []
sucesores :: Int -> [Int] -> [[Int]]
sucesores n xs = [y:xs | y <- [1..n] \\ xs
                       , noAtaca y xs 1]
 
-- (noAtaca y xs d) se verifica si la reina en la fila y no ataca a las
-- colocadas en las filas xs donde d es el número de columnas desde la
-- de la posición de x a la primera de xs.
noAtaca :: Int -> [Int] -> Int -> Bool
noAtaca _ [] _ = True
noAtaca y (x:xs) distH = abs(y-x) /= distH &&
                         noAtaca y xs (distH + 1)               
 
-- Definición de nEstados
-- ======================
 
nEstados :: Int -> Int
nEstados = length . arbolReinas
 
-- Definición de solucionesReinas
-- ==============================
 
--    λ> soluciones 4
--    [[3,1,4,2],[2,4,1,3]]
--    λ> soluciones 5
--    [[4,2,5,3,1],[3,5,2,4,1],[5,3,1,4,2],[4,1,3,5,2],[5,2,4,1,3],
--     [1,4,2,5,3],[2,5,3,1,4],[1,3,5,2,4],[3,1,4,2,5],[2,4,1,3,5]]
soluciones :: Int -> [[Int]]
soluciones n =
  filter (\xs -> length xs == n) (estados n)
 
-- (estados n) es la lista de estados del problema de las n reinas. Por
-- ejemplo, 
--   λ> estados 4
--   [[],
--    [1],[2],[3],[4],
--    [3,1],[4,1],[4,2],[1,3],[1,4],[2,4],
--    [2,4,1],[1,4,2],[4,1,3],[3,1,4],
--    [3,1,4,2],[2,4,1,3]]
estados :: Int -> [[Int]]
estados = concat . levels . arbolReinas
 
-- Definición de nSoluciones
-- =========================
 
nSoluciones :: Int -> Int
nSoluciones = length . soluciones

Período de una lista

El período de una lista xs es la lista más corta ys tal que xs se puede obtener concatenando varias veces la lista ys. Por ejemplo, el período “abababab” es “ab” ya que “abababab” se obtiene repitiendo tres veces la lista “ab”.

Definir la función

   periodo :: Eq a => [a] -> [a]

tal que (periodo xs) es el período de xs. Por ejemplo,

   periodo "ababab"      ==  "ab"
   periodo "buenobueno"  ==  "bueno"
   periodo "oooooo"      ==  "o"
   periodo "sevilla"     ==  "sevilla"

Soluciones

import Data.List (isPrefixOf, inits)
 
-- 1ª solución
-- ===========
 
periodo1 :: Eq a => [a] -> [a]
periodo1 xs = take n xs
    where l = length xs
          n = head [m | m <- divisores l, 
                        concat (replicate (l `div` m) (take m xs)) == xs]
 
-- (divisores n) es la lista de los divisores de n. Por ejemplo,
--    divisores 96  ==  [1,2,3,4,6,8,12,16,24,32,48,96]
divisores :: Int -> [Int]
divisores n = [x | x <- [1..n], n `mod` x == 0]
 
-- 2ª solución
-- ===========
 
periodo2 :: Eq a => [a] -> [a]
periodo2 xs = take n xs
    where l = length xs
          n = head [m | m <- divisores l, 
                        xs `isPrefixOf` cycle (take m xs)]

Combinaciones divisibles

Definir la función

   tieneCombinacionDivisible :: [Int] -> Int -> Bool

tal que (tieneCombinacionDivisible xs m) se verifica si existe alguna forma de combinar todos los elementos de la lista (con las operaciones suma o resta) de forma que el resultado sea divisible por m. Por ejemplo,

   tieneCombinacionDivisible [1,3,4,6] 4  ==  True
   tieneCombinacionDivisible [1,3,9]   2  ==  False

En el primer ejemplo, 1 – 2 + 3 + 4 + 6 = 12 es una combinación divisible por 4. En el segundo ejemplo, las combinaciones de [1,3,9] son

   1 + 3 + 9 =  13
  -1 + 3 + 9 =  11
   1 - 3 + 9 =   7
  -1 - 3 + 9 =   5
   1 + 3 - 9 =  -5
  -1 + 3 - 9 =  -7
   1 - 3 - 9 = -11
  -1 - 3 - 9 = -13

y ninguna de las 4 es divisible por 2.

Soluciones

import Test.QuickCheck
 
-- 1ª solución
-- ===========
 
tieneCombinacionDivisible :: [Int] -> Int -> Bool
tieneCombinacionDivisible xs m =
  any esDivisible (valoresCombinaciones xs)
  where esDivisible x = x `mod` m == 0
 
-- (valoresCombinaciones xs) es la lista de los valores de todas las
-- combinaciones de todos los elementos de la lista con las operaciones
-- suma o resta. Por ejemplo,
--    λ> valoresCombinaciones [1,3,4,6]
--    [14,12,8,6,6,4,0,-2,2,0,-4,-6,-6,-8,-12,-14]
--    λ> valoresCombinaciones [1,3,-4,6]
--    [6,4,0,-2,14,12,8,6,-6,-8,-12,-14,2,0,-4,-6]
valoresCombinaciones :: [Int] -> [Int]
valoresCombinaciones []     = []
valoresCombinaciones [x]    = [x,-x]
valoresCombinaciones (x:xs) = concat [[y + x, y - x] | y <- ys]
  where ys = valoresCombinaciones xs
 
-- 2ª solución
-- ===========
 
tieneCombinacionDivisible2 :: [Int] -> Int -> Bool
tieneCombinacionDivisible2 xs m =
  tieneCombinacionCongruente xs m 0
 
-- (tieneCombinacionCongruente xs m a) se verifica si existe alguna
-- forma de combinar todos los elementos de la lista xs (con las
-- operaciones suma o resta) de forma que el resultado sea congruente
-- con a módulo m. Por ejemplo,
--    tieneCombinacionCongruente [1,3,4,6] 4 0  ==  True
--    tieneCombinacionCongruente [1,3,4,6] 4 1  ==  False
--    tieneCombinacionCongruente [1,3,9] 2 0    ==  False
--    tieneCombinacionCongruente [1,3,9] 2 1    ==  True
tieneCombinacionCongruente :: [Int] -> Int -> Int -> Bool
tieneCombinacionCongruente []  _  _ = False
tieneCombinacionCongruente [x] m  a = (x - a) `mod` m == 0
tieneCombinacionCongruente (x:xs) m a =
  tieneCombinacionCongruente xs m (a-x) ||
  tieneCombinacionCongruente xs m (a+x)
 
-- Equivalencia
-- ============
 
-- La propiedad es
prop_tieneCombinacionDivisible :: [Int] -> Positive Int -> Bool
prop_tieneCombinacionDivisible xs (Positive m) =
  tieneCombinacionDivisible xs m == tieneCombinacionDivisible2 xs m
 
-- La comprobación es
--    λ> quickCheckWith (stdArgs {maxSize=25}) prop_tieneCombinacionDivisible
--    +++ OK, passed 100 tests.
 
-- Comparación de eficiencia
-- =========================
 
--    λ> (n,xs,m) = (200,[-n..n],sum [1..n]) 
--    (0.00 secs, 0 bytes)
--    λ> and [tieneCombinacionDivisible xs a | a <- [1..m]]
--    True
--    (4.74 secs, 6,536,494,976 bytes)
--    λ> and [tieneCombinacionDivisible2 xs a | a <- [1..m]]
--    True
--    (2.97 secs, 3,381,932,664 bytes)

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Cálculo de pi con el producto de Wallis

El producto de Wallis es una expresión, descubierta por John Wallis en 1655, para representar el valor de π y que establece que:

    π     2     2     4     4     6     6     8     8
   --- = --- · --- · --- · --- · --- · --- · --- · --- ···
    2     1     3     3     5     5     7     7     9

Definir las funciones

   factoresWallis  :: [Rational]
   productosWallis :: [Rational]
   aproximacionPi  :: Int -> Double
   errorPi         :: Double -> Int

tales que

  • factoresWallis es la sucesión de los factores del productos de Wallis. Por ejemplo,
     λ> take 10 factoresWallis
     [2 % 1,2 % 3,4 % 3,4 % 5,6 % 5,6 % 7,8 % 7,8 % 9,10 % 9,10 % 11]
  • productosWallis es la sucesión de los productos de los primeros factores de Wallis. Por ejemplo,
     λ> take 7 productosWallis
     [2 % 1,4 % 3,16 % 9,64 % 45,128 % 75,256 % 175,2048 % 1225]
  • (aproximacionPi n) es la aproximación de pi obtenida multiplicando los n primeros factores de Wallis. Por ejemplo,
     aproximacionPi 20     ==  3.2137849402931895
     aproximacionPi 200    ==  3.1493784731686008
     aproximacionPi 2000   ==  3.142377365093878
     aproximacionPi 20000  ==  3.141671186534396
  • (errorPi x) es el menor número de factores de Wallis necesarios para obtener pi con un error menor que x. Por ejemplo,
     errorPi 0.1     ==  14
     errorPi 0.01    ==  155
     errorPi 0.001   ==  1569
     errorPi 0.0001  ==  15707

Soluciones

import Data.Ratio
 
factoresWallis :: [Rational]
factoresWallis =
  concat [[y%(y-1),  y%(y+1)] | x <- [1..], let y = 2*x]
 
productosWallis :: [Rational]
productosWallis = scanl1 (*) factoresWallis
 
aproximacionPi :: Int -> Double
aproximacionPi n =
  fromRational (2 * productosWallis !! n)
 
errorPi :: Double -> Int
errorPi x = head [n | n <- [1..]
                    , abs (pi - aproximacionPi n) < x]
 
-- 2ª definición de errorPi
errorPi2 :: Double -> Int
errorPi2 x =
  length (takeWhile (>=x) [abs (pi - 2 * fromRational y)
                          | y <- productosWallis])
 
-- 2ª definición de aproximacionPi
aproximacionPi2 :: Int -> Double
aproximacionPi2 n =
  2 * productosWallis2 !! n
 
productosWallis2 :: [Double]
productosWallis2 = scanl1 (*) factoresWallis2
 
factoresWallis2 :: [Double]
factoresWallis2 =
  concat [[y/(y-1),  y/(y+1)] | x <- [1..], let y = 2*x]
 
-- 3ª definición de errorPi
errorPi3 :: Double -> Int
errorPi3 x = head [n | n <- [1..]
                     , abs (pi - aproximacionPi2 n) < x]
 
-- Comparación de eficiencia
--    λ> errorPi 0.001
--    1569
--    (0.82 secs, 374,495,816 bytes)
--
--    λ> errorPi2 0.001
--    1569
--    (0.79 secs, 369,282,320 bytes)
--
--    λ> errorPi3 0.001
--    1569
--    (0.04 secs, 0 bytes)

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Pensamiento

“¿Por qué son hermosos los números? Es como preguntar por qué es bella la Novena Sinfonía de Beethoven. Si no ves por qué, alguien no puede decírtelo. Yo sé que los números son hermosos. Si no son hermosos, nada lo es.”

Paul Erdös.

Búsqueda de la mina

En este ejercicio, se representa un mapa mediante una lista de listas de la misma longitud donde todos sus elementos son 0 menos uno (que es un 1) que es donde se encuentra la mina. Por ejemplo, en el mapa

   0 0 0 0
   0 0 0 0
   0 1 0 0

la posición de la mina es (2,1).

Definir la función

   posicionMina :: [[Int]] -> (Int,Int)

tal que (posicionMina m) es la posición de la mina en el mapa m, Por ejemplo,

   posicionMina [[0,0,0,0],[0,0,0,0],[0,1,0,0]]  ==  (2,1)

Soluciones

import Data.List (elemIndex)
import Data.Array (assocs, listArray)
 
-- 1ª solución
posicionMina :: [[Int]] -> (Int,Int)
posicionMina xss = (length yss, length ys)
  where (yss,xs:_) = break (1 `elem`) xss
        ys         = takeWhile (/= 1) xs
 
-- 2ª solución
posicionMina2 :: [[Int]] -> (Int,Int)
posicionMina2 xss = divMod p (length (head xss))
  where Just p = elemIndex 1 (concat xss)
 
-- 3ª solución
posicionMina3 :: [[Int]] -> (Int,Int)
posicionMina3 xss =
  (fst . head . filter ((1 ==) . snd) . assocs) a
  where m = length xss - 1
        n = length (head xss) - 1
        a = listArray ((0,0),(m,n)) (concat xss)

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Pensamiento

“La vida de un matemático está dominada por una insaciable curiosidad, un deseo que raya en la pasión por resolver los problemas que estudia.”

Jean Dieudonné.