La conjetura de Mertens

Un número entero n es libre de cuadrados si no existe un número primo p tal que p² divide a n; es decir, los factores primos de n son todos distintos.

La función de Möbius μ(n) está definida para todos los enteros positivos como sigue:

  • μ(n) = 1 si n es libre de cuadrados y tiene un número par de factores primos.
  • μ(n) = -1 si n es libre de cuadrados y tiene un número impar de factores primos.
  • μ(n) = 0 si n no es libre de cuadrados.

Sus primeros valores son 1, -1, -1, 0, -1, 1, -1, 0, 0, 1, …

La función de Mertens M(n) está definida para todos los enteros positivos como la suma de μ(k) para 1 ≤ k ≤ n. Sus primeros valores son 1, 0, -1, -1, -2, -1, -2, -2, …

La conjetura de Mertens afirma que

Para todo entero x mayor que 1, el valor absoluto de la función de Mertens en x es menor que la raíz cuadrada de x.

La conjetura fue planteada por Franz Mertens en 1897. Riele Odlyzko, demostraronen 1985 que la conjetura de Mertens deja de ser cierta más o menos a partir de 10^{10^{64}}, cifra que luego de algunos refinamientos se redujo a 10^{10^{40}}.

Definir las funciones

tales que

  • (mobius n) es el valor de la función de Möbius en n. Por ejemplo,

  • (mertens n) es el valor de la función de Mertens en n. Por ejemplo,

  • (graficaMertens n) dibuja la gráfica de la función de Mertens, la raíz cuadrada y el opuestos de la raíz cuadrada para los n primeros n enteros positivos. Por ejemplo, (graficaMertens 1000) dibuja

Comprobar con QuickCheck la conjetura de Mertens.

Nota: El ejercicio está basado en La conjetura de Merterns y su relación con un número tan raro como extremada y colosalmente grande publicado por @Alvy la semana pasada en Microsiervos.

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang=»haskell»> y otra con </pre>

Pensamiento

«El control de la complejidad es la esencia de la programación informática.»

Brian Kernighan.

Productos de sumas de cuatro cuadrados

Definir la función

tal que (productoSuma4Cuadrados as bs cs ds) es el producto de las sumas de los cuadrados de cada una de las listas que ocupan la misma posición (hasta que alguna se acaba). Por ejemplo,

Comprobar con QuickCheckWith que si as, bs cs y ds son listas no vacías de enteros positivos, entonces (productoSuma4Cuadrados as bs cs ds) se puede escribir como la suma de los cuadrados de cuatro enteros positivos.

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang=»haskell»> y otra con </pre>

Pensamiento

¿Vivir? Sencillamente:
la sed y el agua cerca …
o el agua lejos, más, la sed y el agua,
un poco de cansancio ¡y a beberla!.

Antonio Machado

Sumas de cuatro cuadrados

El número 42 es una suma de cuatro cuadrados de números enteros positivos ya que

Definir las funciones

tales que

  • (sumas4Cuadrados n) es la lista de las descompociones de n como suma de cuatro cuadrados. Por ejemplo,

  • (graficaNumeroSumas4Cuadrados n) dibuja la gráfica del número de descomposiciones en sumas de 4 cuadrados de los n primeros. Por ejemplo, (graficaNumeroSumas4Cuadrados 600) dibuja

Soluciones

Pensamiento

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang=»haskell»> y otra con </pre>

¿Cuál es el peor de todos
los afanes? Preguntar.
¿Y el mejor? – Hacer camino
sin volver la vista atrás.

Antonio Machado

Números sin 2 en base 3

Definir la sucesión

cuyos términos son los números cuya representación en base 3 no contiene el dígito 2. Por ejemplo,

Se observa que

  • 12 está en la sucesión ya que su representación en base 3 es 110 (porque 1·3² + 1·3¹ + 0.3⁰ = 12) y no contiene a 2.
  • 14 no está en la sucesión ya que su representación en base 3 es 112 (porque 1·3² + 1·3¹ + 2.3⁰ = 14) y contiene a 2.

Comprobar con QuickCheck que las sucesiones numerosSin2EnBase3 y sucesionSin3enPA (del ejercicio anterior) son iguales; es decir, para todo número natural n, el n-ésimo término de numerosSin2EnBase3 es igual al n-ésimo término de sucesionSin3enPA.

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang=»haskell»> y otra con </pre>

Pensamiento

O que yo pueda asesinar un día
en mi alma, al despertar, esa persona
que me hizo el mundo mientras yo dormía.

Antonio Machado

Sucesiones sin progresiones aritméticas de longitud 3

Tres números x, y, z está en progresión aritmética (PA) si existe un d tal que y = x+d y z = y+d. Por ejemplo, 1, 3, 5 están en PA ya que 3 = 1+2 y 5 = 3+2.

Se considera la sucesión donde cada uno de sus términos es el número natural tal que no está en PA con cualesquiera dos términos anteriores de la sucesión. Por ejemplo, si representamos por f(n) el n-ésimo término de la sucesión, entonces

Definir la sucesión

donde cada uno de sus términos es el menor número natural tal que no está en PA con cualesquiera dos términos anteriores de la sucesión. Por ejemplo,

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang=»haskell»> y otra con </pre>

Pensamiento

Quien se vive se pierde, Abel decía.
¡Oh, distancia, distancia!, que la estrella
que nadie toca, guía.
¿Quién navegó sin ella?

Antonio Machado