Cálculo de pi mediante la fracción continua de Lange

En 1999, L.J. Lange publicó el artículo An elegant new continued fraction for π.

En el primer teorema del artículo se demuestra la siguiente expresión de π mediante una fracción continua
Calculo_de_pi_mediante_la_fraccion_continua_de_Lange

La primeras aproximaciones son

Definir las funciones

tales que

  • (aproximacionPi n) es la n-ésima aproximación de pi con la fracción continua de Lange. Por ejemplo,

  • (grafica xs) dibuja la gráfica de las k-ésimas aproximaciones de pi donde k toma los valores de la lista xs. Por ejemplo, (grafica [1..10]) dibuja
    Calculo_de_pi_mediante_la_fraccion_continua_de_Lange_2
    (grafica [10..100]) dibuja
    Calculo_de_pi_mediante_la_fraccion_continua_de_Lange_3
    y (grafica [100..200]) dibuja
    Calculo_de_pi_mediante_la_fraccion_continua_de_Lange_4

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Cálculo de pi mediante la variante de Euler de la serie armónica

En el artículo El desarrollo más bello de Pi como suma infinita, Miguel Ángel Morales comenta el desarrollo de pi publicado por Leonhard Euler en su libro «Introductio in Analysis Infinitorum» (1748).

El desarrollo es el siguiente
Calculo_de_pi_mediante_la_variante_de_Euler_de_la_serie_armonica_1
y se obtiene a partir de la serie armónica
Calculo_de_pi_mediante_la_variante_de_Euler_de_la_serie_armonica_2
modificando sólo el signo de algunos términos según el siguiente criterio:

  • Dejamos un + cuando el denominador de la fracción sea un 2 o un primo de la forma 4m-1.
  • Cambiamos a – si el denominador de la fracción es un primo de la forma 4m+1.
  • Si el número es compuesto ponemos el signo que quede al multiplicar los signos correspondientes a cada factor.

Por ejemplo,

  • la de denominador 3 = 4×1-1 lleva un +,
  • la de denominador 5 = 4×1+1 lleva un -,
  • la de denominador 13 = 4×3+1 lleva un -,
  • la de denominador 6 = 2×3 lleva un + (porque los dos llevan un +),
  • la de denominador 10 = 2×5 lleva un – (porque el 2 lleva un + y el 5 lleva un -) y
  • la de denominador 50 = 5x5x2 lleva un + (un – por el primer 5, otro – por el segundo 5 y un + por el 2).

Definir las funciones

tales que

  • (aproximacionPi n) es la aproximación de pi obtenida sumando los n primeros términos de la serie de Euler. Por ejemplo.

  • (grafica n) dibuja la gráfica de las aproximaciones de pi usando k sumando donde k toma los valores de la lista [100,110..n]. Por ejemplo, al evaluar (grafica 4000) se obtiene
    Calculo_de_pi_mediante_la_variante_de_Euler_de_la_serie_armonica_3.png

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Cálculo de dígitos de pi y su distribución

Se pueden generar los dígitos de Pi, como se explica en el artículo Unbounded spigot algorithms for the digits of pi c0on la función digitosPi definida por

Por ejemplo,

La distribución de los primeros 25 dígitos de pi es [0,2,3,5,3,3,3,1,2,3] ya que el 0 no aparece, el 1 ocurre 2 veces, el 3 ocurre 3 veces, el 4 ocurre 5 veces, …

Usando digitosPi, definir las siguientes funciones

tales que

  • (distribucionDigitosPi n) es la distribución de los n primeros dígitos de pi. Por ejemplo,

  • (frecuenciaDigitosPi n) es la frecuencia de los n primeros dígitos de pi. Por ejemplo,

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Cálculo de pi mediante los métodos de Gregory-Leibniz y de Beeler

La fórmula de Gregory-Leibniz para calcular pi es
Calculo_de_pi_mediante_los_metodos_de_Gregory-Leibniz_y_de_Beeler_1
y la de Beeler es
Calculo_de_pi_mediante_los_metodos_de_Gregory-Leibniz_y_de_Beeler_2

Definir las funciones

tales que

  • (aproximaPiGL n) es la aproximación de pi con los primeros n términos de la fórmula de Gregory-Leibniz. Por ejemplo,

  • (aproximaPiBeeler n) es la aproximación de pi con los primeros n términos de la fórmula de Beeler. Por ejemplo,

  • (graficas xs) dibuja la gráfica de las k-ésimas aproximaciones de pi, donde k toma los valores de la lista xs, con las fórmulas de Gregory-Leibniz y de Beeler. Por ejemplo, (graficas [1..25]) dibuja
    Calculo_de_pi_mediante_los_metodos_de_Gregory-Leibniz_y_de_Beeler_3
    donde la línea morada corresponde a la aproximación de Gregory-Leibniz y la verde a la de Beeler.

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Cálculo de pi con el producto de Wallis

El producto de Wallis es una expresión, descubierta por John Wallis en 1655, para representar el valor de π y que establece que:

Definir las funciones

tales que

  • factoresWallis es la sucesión de los factores del productos de Wallis. Por ejemplo,

  • productosWallis es la sucesión de los productos de los primeros factores de Wallis. Por ejemplo,

  • (aproximacionPi n) es la aproximación de pi obtenida multiplicando los n primeros factores de Wallis. Por ejemplo,

  • (errorPi x) es el menor número de factores de Wallis necesarios para obtener pi con un error menor que x. Por ejemplo,

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Pensamiento

«¿Por qué son hermosos los números? Es como preguntar por qué es bella la Novena Sinfonía de Beethoven. Si no ves por qué, alguien no puede decírtelo. Yo sé que los números son hermosos. Si no son hermosos, nada lo es.»

Paul Erdös.