Menu Close

Números en una cadena

Definir la función

   numeros :: String -> [Int]

tal que (numeros cs) es la lista de los números enteros no negativos de la cadena cs. Por ejemplo,

   λ> numeros "Esta cadena tiene 3 numeros: el 16 y el 2019 solamente." 
   [3,16,2019]
   λ> numeros "Esta cadena tiene 3 numeros naturales: -2 más 2 es 0" 
   [3,2,0]
   λ> numeros "Esta cadena tiene 1 numero natural: 2.5 no es entereo" 
   [1]

Soluciones

import Data.Char  (isDigit)
 
-- 1ª definición
-- =============
 
numeros :: String -> [Int]
numeros cs = map read (filter esNumero (words cs))
 
-- (esNumero cs) se verifica si la cadena no vacía cs representa
-- un número entero. Por ejemplo,
--    esNumero "2019"  ==  True
--    esNumero "20.9"  ==  False
--    esNumero "201a"  ==  False
esNumero :: String -> Bool
esNumero = all (`elem` ['0'..'9'])
 
-- 2ª solución
-- ===========
 
numeros2 :: String -> [Int]
numeros2 cs = map read (filter (all isDigit) (words cs))
 
-- 3ª solución
-- ===========
 
numeros3 :: String -> [Int]
numeros3 = map read . filter (all isDigit) . words

Pensamiento

Tu profecía, poeta.
— Mañana hablarán los mudos:
el corazón y la piedra.

Antonio Machado

Conjetura de las familias estables por uniones

La conjetura de las familias estables por uniones fue planteada por Péter Frankl en 1979 y aún sigue abierta.

Una familia de conjuntos es estable por uniones si la unión de dos conjuntos cualesquiera de la familia pertenece a la familia. Por ejemplo, {∅, {1}, {2}, {1,2}, {1,3}, {1,2,3}} es estable por uniones; pero {{1}, {2}, {1,3}, {1,2,3}} no lo es.

La conjetura afirma que toda familia no vacía estable por uniones y distinta de {∅} posee algún elemento que pertenece al menos a la mitad de los conjuntos de la familia.

Definir las funciones

   esEstable :: Ord a => Set (Set a) -> Bool
   familiasEstables :: Ord a => Set a -> Set (Set (Set a))
   mayoritarios :: Ord a => Set (Set a) -> [a]
   conjeturaFrankl :: Int -> Bool

tales que

  • (esEstable f) se verifica si la familia f es estable por uniones. Por ejemplo,
     λ> esEstable (fromList [empty, fromList [1,2], fromList [1..5]])
     True
     λ> esEstable (fromList [empty, fromList [1,7], fromList [1..5]])
     False
     λ> esEstable (fromList [fromList [1,2], singleton 3, fromList [1..3]])
     True
  • (familiasEstables c) es el conjunto de las familias estables por uniones formadas por elementos del conjunto c. Por ejemplo,
     λ> familiasEstables (fromList [1..2])
     fromList
       [ fromList []
       , fromList [fromList []]
       , fromList [fromList [],fromList [1]]
       , fromList [fromList [],fromList [1],fromList [1,2]],
         fromList [fromList [],fromList [1],fromList [1,2],fromList [2]]
       , fromList [fromList [],fromList [1,2]]
       , fromList [fromList [],fromList [1,2],fromList [2]]
       , fromList [fromList [],fromList [2]]
       , fromList [fromList [1]]
       , fromList [fromList [1],fromList [1,2]]
       , fromList [fromList [1],fromList [1,2],fromList [2]]
       , fromList [fromList [1,2]]
       , fromList [fromList [1,2],fromList [2]]
       , fromList [fromList [2]]]
     λ> size (familiasEstables (fromList [1,2]))
     14
     λ> size (familiasEstables (fromList [1..3]))
     122
     λ> size (familiasEstables (fromList [1..4]))
     4960
  • (mayoritarios f) es la lista de elementos que pertenecen al menos a la mitad de los conjuntos de la familia f. Por ejemplo,
     mayoritarios (fromList [empty, fromList [1,3], fromList [3,5]]) == [3]
     mayoritarios (fromList [empty, fromList [1,3], fromList [4,5]]) == []
  • (conjeturaFrankl n) se verifica si para toda familia f formada por elementos del conjunto {1,2,…,n} no vacía, estable por uniones y distinta de {∅} posee algún elemento que pertenece al menos a la mitad de los conjuntos de f. Por ejemplo.
     conjeturaFrankl 2  ==  True
     conjeturaFrankl 3  ==  True
     conjeturaFrankl 4  ==  True

Soluciones

import Data.Set  as S ( Set
                      , delete
                      , deleteFindMin
                      , empty
                      , filter
                      , fromList
                      , insert
                      , map
                      , member
                      , null
                      , singleton
                      , size
                      , toList
                      , union
                      , unions
                      )
import Data.List as L ( filter
                      , null
                      )
 
esEstable :: Ord a => Set (Set a) -> Bool
esEstable xss =
  and [ys `S.union` zs `member` xss | (ys,yss) <- selecciones xss
                                    , zs <- toList yss]
 
-- (seleccciones xs) es la lista de los pares formada por un elemento de
-- xs y los restantes elementos. Por ejemplo,
--    λ> selecciones (fromList [3,2,5])
--    [(2,fromList [3,5]),(3,fromList [2,5]),(5,fromList [2,3])]
selecciones :: Ord a => Set a -> [(a,Set a)]
selecciones xs =
  [(x,delete x xs) | x <- toList xs] 
 
familiasEstables :: Ord a => Set a -> Set (Set (Set a))
familiasEstables xss =
  S.filter esEstable (familias xss)
 
-- (familias c) es la familia formadas con elementos de c. Por ejemplo,
--    λ> mapM_ print (familias (fromList [1,2]))
--    fromList []
--    fromList [fromList []]
--    fromList [fromList [],fromList [1]]
--    fromList [fromList [],fromList [1],fromList [1,2]]
--    fromList [fromList [],fromList [1],fromList [1,2],fromList [2]]
--    fromList [fromList [],fromList [1],fromList [2]]
--    fromList [fromList [],fromList [1,2]]
--    fromList [fromList [],fromList [1,2],fromList [2]]
--    fromList [fromList [],fromList [2]]
--    fromList [fromList [1]]
--    fromList [fromList [1],fromList [1,2]]
--    fromList [fromList [1],fromList [1,2],fromList [2]]
--    fromList [fromList [1],fromList [2]]
--    fromList [fromList [1,2]]
--    fromList [fromList [1,2],fromList [2]]
--    fromList [fromList [2]]
--    λ> size (familias (fromList [1,2]))
--    16
--    λ> size (familias (fromList [1,2,3]))
--    256
--    λ> size (familias (fromList [1,2,3,4]))
--    65536
familias :: Ord a => Set a -> Set (Set (Set a))
familias c =
  subconjuntos (subconjuntos c)
 
-- (subconjuntos c) es el conjunto de los subconjuntos de c. Por ejemplo,
--    λ> mapM_ print (subconjuntos (fromList [1,2,3]))
--    fromList []
--    fromList [1]
--    fromList [1,2]
--    fromList [1,2,3]
--    fromList [1,3]
--    fromList [2]
--    fromList [2,3]
--    fromList [3]
subconjuntos :: Ord a => Set a -> Set (Set a)
subconjuntos c
  | S.null c  = singleton empty
  | otherwise = S.map (insert x) sr `union` sr
  where (x,rc) = deleteFindMin c
        sr     = subconjuntos rc
 
-- (elementosFamilia f) es el conjunto de los elementos de los elementos
-- de la familia f. Por ejemplo, 
--    λ> elementosFamilia (fromList [empty, fromList [1,2], fromList [2,5]])
--    fromList [1,2,5]
elementosFamilia :: Ord a => Set (Set a) -> Set a
elementosFamilia = unions . toList
 
-- (nOcurrencias f x) es el número de conjuntos de la familia f a los
-- que pertenece el elemento x. Por ejemplo,
--    nOcurrencias (fromList [empty, fromList [1,3], fromList [3,5]]) 3 == 2
--    nOcurrencias (fromList [empty, fromList [1,3], fromList [3,5]]) 4 == 0
--    nOcurrencias (fromList [empty, fromList [1,3], fromList [3,5]]) 5 == 1
nOcurrencias :: Ord a => Set (Set a) -> a -> Int
nOcurrencias f x =
  length (L.filter (x `member`) (toList f))
 
mayoritarios :: Ord a => Set (Set a) -> [a]
mayoritarios f =
  [x | x <- toList (elementosFamilia f)
     , nOcurrencias f x >= n]
  where n = (1 + size f) `div` 2
 
conjeturaFrankl :: Int -> Bool
conjeturaFrankl n =
  and [ not (L.null (mayoritarios f))
      | f <- fs
      , f /= fromList []
      , f /= fromList [empty]]
  where fs = toList (familiasEstables (fromList [1..n]))
 
 
-- conjeturaFrankl' :: Int -> Bool
conjeturaFrankl' n =
  [f | f <- fs
     , L.null (mayoritarios f)
     , f /= fromList []
     , f /= fromList [empty]]
  where fs = toList (familiasEstables (fromList [1..n]))

Pensamiento

Pero tampoco es razón
desdeñar
consejo que es confesión.

Antonio Machado

Distribución de diferencias de dígitos consecutivos de pi

Usando la librería Data.Number.CReal, que se instala con

   cabal install number

se pueden calcular el número pi con la precisión que se desee. Por ejemplo,

   λ> import Data.Number.CReal
   λ> showCReal 60 pi
   "3.141592653589793238462643383279502884197169399375105820974945"

importa la librería y calcula el número pi con 60 decimales.

La distribución de las diferencias de los dígitos consecutivos para los 18 primeros n dígitos de pi se calcula como sigue: los primeros 18 dígitos de pi son

   3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3, 2, 3

Las diferencias de sus elementos consecutivos es

   2, -3, 3, -4, -4, 7, -4, 1, 2, -2, -3, -1, 2, -2, 6, 1, -1

y la distribución de sus frecuencias en el intervalo [-9,9] es

   0, 0, 0, 0, 0, 3, 2, 2, 2, 0, 2, 3, 1, 0, 0, 1, 1, 0, 0

es decir, el desde el -9 a -5 no aparecen, el -4 aparece 3 veces, el -2 aparece 2 veces y así sucesivamente.

Definir las funciones

   distribucionDDCpi :: Int -> [Int]
   graficas :: [Int] -> FilePath -> IO ()

tales que

  • (distribucionDDCpi n) es la distribución de las diferencias de los dígitos consecutivos para los primeros n dígitos de pi. Por ejemplo,
     λ> distribucionDDCpi 18
     [0,0,0,0,0,3,2,2,2,0,2,3,1,0,0,1,1,0,0]
     λ> distribucionDDCpi 100
     [1,2,1,7,7,7,6,5,8,6,7,14,4,9,3,6,4,1,0]
     λ> distribucionDDCpi 200
     [3,6,2,13,14,12,11,12,15,17,15,19,11,17,8,13,9,2,0]
     λ> distribucionDDCpi 1000
     [16,25,23,44,57,61,55,75,92,98,80,88,64,65,42,54,39,14,8]
     λ> distribucionDDCpi 5000
     [67,99,130,196,245,314,361,391,453,468,447,407,377,304,242,221,134,97,47]
  • (graficas ns f) dibuja en el fichero f las gráficas de las distribuciones de las diferencias de los dígitos consecutivos para los primeros n dígitos de pi, para n en ns. Por ejemplo, al evaluar (graficas [100,250..4000] “distribucionDDCpi.png” se escribe en el fichero “distribucionDDCpi.png” la siguiente gráfica

Soluciones

import Data.Number.CReal
import Graphics.Gnuplot.Simple
import Data.Array
 
--    λ> digitosPi 18
--    [3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3,2,3]
digitosPi :: Int -> [Int]
digitosPi n = init [read [c] | c <- (x:xs)]
  where (x:_:xs) = showCReal n pi
 
--    λ> diferenciasConsecutivos (digitosPi 18)
--    [2,-3,3,-4,-4,7,-4,1,2,-2,-3,-1,2,-2,6,1,-1]
diferenciasConsecutivos :: Num a => [a] -> [a]
diferenciasConsecutivos xs =
  zipWith (-) xs (tail xs)
 
distribucionDDCpi :: Int -> [Int]
distribucionDDCpi =
  distribucion . diferenciasConsecutivos . digitosPi
  where distribucion xs =
          elems (accumArray (+) 0 (-9,9) (zip xs (repeat 1)))
 
graficas :: [Int] -> FilePath -> IO ()
graficas ns f = 
  plotLists [Key Nothing, PNG f]
            [puntos n | n <- ns]
  where puntos :: Int -> [(Int,Int)]
        puntos n = zip [-9..9] (distribucionDDCpi n)

Pensamiento

Doy consejo, a fuer de viejo:
nunca sigas mi consejo.

Antonio Machado

Cálculo de dígitos de pi y su distribución

Se pueden generar los dígitos de Pi, como se explica en el artículo Unbounded spigot algorithms for the digits of pi c0on la función digitosPi definida por

   digitosPi :: [Integer]
   digitosPi = g(1,0,1,1,3,3) where
     g (q,r,t,k,n,l) = 
       if 4*q+r-t < n*t
       then n : g (10*q, 10*(r-n*t), t, k, div (10*(3*q+r)) t - 10*n, l)
       else g (q*k, (2*q+r)*l, t*l, k+1, div (q*(7*k+2)+r*l) (t*l), l+2)

Por ejemplo,

   λ> take 25 digitosPi
   [3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3,2,3,8,4,6,2,6,4,3]

La distribución de los primeros 25 dígitos de pi es [0,2,3,5,3,3,3,1,2,3] ya que el 0 no aparece, el 1 ocurre 2 veces, el 3 ocurre 3 veces, el 4 ocurre 5 veces, …

Usando digitosPi, definir las siguientes funciones

   distribucionDigitosPi :: Int -> [Int]
   frecuenciaDigitosPi   :: Int -> [Double]

tales que

  • (distribucionDigitosPi n) es la distribución de los n primeros dígitos de pi. Por ejemplo,
     λ> distribucionDigitosPi 10
     [0,2,1,2,1,2,1,0,0,1]
     λ> distribucionDigitosPi 100
     [8,8,12,12,10,8,9,8,12,13]
     λ> distribucionDigitosPi 1000
     [93,116,103,103,93,97,94,95,101,105]
     λ> distribucionDigitosPi 5000
     [466,531,496,460,508,525,513,488,492,521]
  • (frecuenciaDigitosPi n) es la frecuencia de los n primeros dígitos de pi. Por ejemplo,
   λ> frecuenciaDigitosPi 10
   [0.0,20.0,10.0,20.0,10.0,20.0,10.0,0.0,0.0,10.0]
   λ> frecuenciaDigitosPi 100
   [8.0,8.0,12.0,12.0,10.0,8.0,9.0,8.0,12.0,13.0]
   λ> frecuenciaDigitosPi 1000
   [9.3,11.6,10.3,10.3,9.3,9.7,9.4,9.5,10.1,10.5]
   λ> frecuenciaDigitosPi 5000
   [9.32,10.62,9.92,9.2,10.16,10.5,10.26,9.76,9.84,10.42]

Soluciones

import Data.Array
import Data.List (group, sort)
 
digitosPi :: [Integer]
digitosPi = g(1,0,1,1,3,3) where
  g (q,r,t,k,n,l) = 
    if 4*q+r-t < n*t
    then n : g (10*q, 10*(r-n*t), t, k, div (10*(3*q+r)) t - 10*n, l)
    else g (q*k, (2*q+r)*l, t*l, k+1, div (q*(7*k+2)+r*l) (t*l), l+2)
 
-- 1ª definición
-- =============
 
distribucionDigitosPi :: Int -> [Int]
distribucionDigitosPi n =
    elems (accumArray (+) 0 (0,9) [(i,1)
                                  | i <- take n digitosPi]) 
 
frecuenciaDigitosPi :: Int -> [Double]
frecuenciaDigitosPi n =
  [100 * (fromIntegral x / m) | x <- distribucionDigitosPi n]
  where m = fromIntegral n
 
-- 2ª definición
-- =============
 
distribucionDigitosPi2 :: Int -> [Int]
distribucionDigitosPi2 n =
  [length xs - 1 | xs <- group (sort (take n digitosPi ++ [0..9]))]
 
frecuenciaDigitosPi2 :: Int -> [Double]
frecuenciaDigitosPi2 n =
  [100 * (fromIntegral x / m) | x <- distribucionDigitosPi2 n]
  where m = fromIntegral n
 
-- Comparación de eficiencia
-- =========================
 
--    λ> last (take 5000 digitosPi)
--    2
--    (4.47 secs, 3,927,848,448 bytes)
--    λ> frecuenciaDigitosPi 5000
--    [9.32,10.62,9.92,9.2,10.16,10.5,10.26,9.76,9.84,10.42]
--    (0.01 secs, 0 bytes)
--    λ> frecuenciaDigitosPi2 5000
--    [9.32,10.62,9.92,9.2,10.16,10.5,10.26,9.76,9.84,10.42]
--    (0.02 secs, 0 bytes)

Pensamiento

¿Cuál es la verdad? ¿El río
que fluye y pasa
donde el barco y el barquero
son también ondas de agua?
¿O este soñar del marino
siempre con ribera y ancla?

Antonio Machado

Huecos de Aquiles

Un número de Aquiles es un número natural n que es potente (es decir, si p es un divisor primo de n, entonces p² también lo es) y no es una potencia perfecta (es decir, no existen números naturales m y k tales que n es igual a m^k). Por ejemplo,

  • 108 es un número de Aquiles proque es un número potente (ya que su factorización es 2^2 · 3^3, sus divisores primos son 2 and 3 y sus cuadrados (2^2 = 4 y 3^2 = 9) son divisores de 108. Además, 108 no es una potencia perfecta.
  • 360 no es un número de Aquiles ya que 5 es un divisor primo de 360, pero 5^2 = 15 no lo es.
  • 784 no es un número de Aquiles porque, aunque es potente, es una potencia perfecta ya que 784 = 28^2.

Los primeros números de Aquiles son

   72, 108, 200, 288, 392, 432, 500, 648, 675, 800, 864, 968, 972, ...

Definir las funciones

   esAquiles              :: Integer -> Bool
   huecosDeAquiles        :: [Integer]
   graficaHuecosDeAquiles :: Int -> IO ()

tales que

  • (esAquiles x) se verifica si x es un número de Aquiles. Por ejemplo,
     esAquiles 108         ==  True
     esAquiles 360         ==  False
     esAquiles 784         ==  False
     esAquiles 5425069447  ==  True
     esAquiles 5425069448  ==  True
  • huecosDeAquiles es la sucesión de la diferencias entre los números de Aquiles consecutivos. Por ejemplo,
     λ> take 15 huecosDeAquiles
     [36,92,88,104,40,68,148,27,125,64,104,4,153,27,171]
  • (graficaHuecosDeAquiles n) dibuja la gráfica de los n primeros huecos de Aquiles. Por ejemplo, (graficaHuecosDeAquiles 160) dibuja

Soluciones

import Data.List (group)
import Data.Numbers.Primes (primeFactors)
import Graphics.Gnuplot.Simple
 
-- Definición de esAquiles
-- =======================
 
esAquiles :: Integer -> Bool
esAquiles x = esPotente x && noEsPotenciaPerfecta x
 
-- (esPotente x) se verifica si x es potente. Por ejemplo,
--    esPotente 108  ==  True
--    esPotente 360  ==  False
--    esPotente 784  ==  True
esPotente :: Integer -> Bool
esPotente x = all (>1) (exponentes x)
 
-- (exponentes x) es la lista de los exponentes en la factorización de
-- x. Por ejemplo,
--    exponentes 108  ==  [2,3]
--    exponentes 360  ==  [3,2,1]
--    exponentes 784  ==  [4,2]
exponentes :: Integer -> [Int]
exponentes x = map length (group (primeFactors x))
 
-- (noEsPotenciaPerfecta x) se verifica si x no es una potencia
-- perfecta. Por ejemplo,
--    noEsPotenciaPerfecta 108  ==  True
--    noEsPotenciaPerfecta 360  ==  True
--    noEsPotenciaPerfecta 784  ==  False
noEsPotenciaPerfecta :: Integer -> Bool
noEsPotenciaPerfecta x = foldl1 gcd (exponentes x) == 1 
 
-- Definición de huecosDeAquiles
-- =============================
 
huecosDeAquiles :: [Integer]
huecosDeAquiles = zipWith (-) (tail aquiles) aquiles
 
-- aquiles es la sucesión de los números de Aquiles. Por ejemplo, 
--    λ> take 15 aquiles
--    [72,108,200,288,392,432,500,648,675,800,864,968,972,1125,1152]
aquiles :: [Integer]
aquiles = filter esAquiles [2..]
 
-- Definición de graficaHuecosDeAquiles
-- ====================================
 
graficaHuecosDeAquiles :: Int -> IO ()
graficaHuecosDeAquiles n =
  plotList [ Key Nothing
           , PNG "Huecos_de_Aquiles.png"
           ]
           (take n huecosDeAquiles)

Pensamiento

Tengo a mis amigos
en mi soledad;
cuando estoy con ellos
¡qué lejos están!

Antonio Machado