Números como sumas de primos consecutivos

En el artículo Integers as a sum of consecutive primes in 2,3,4,.. ways se presentan números que se pueden escribir como sumas de primos consecutivos de varias formas. Por ejemplo, el 41 se puede escribir de dos formas distintas

el 240 se puede escribir de tres formas

y el 311 se puede escribir de 4 formas

Definir la función

tal que (sumas x) es la lista de las formas de escribir x como suma de dos o más números primos consecutivos. Por ejemplo,

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Pensamiento

«El desarrollo de las matemáticas hacia una mayor precisión ha llevado, como es bien sabido, a la formalización de grandes partes de las mismas, de modo que se puede probar cualquier teorema usando nada más que unas pocas reglas mecánicas.»

Kurt Gödel.

Suma de intervalos

Los intervalos se pueden representar por pares de enteros (a,b) con a < b. Los elementos del intervalo (2,5) son 2, 3, 4 y 5; por tanto, su longitud es 4. Para calcular la suma de los longitudes de una lista de intervalos hay que tener en cuenta que si hay intervalos superpuestos sus elementos deben de contarse sólo una vez. Por ejemplo, la suma de los intervalos de [(1,4),(7,10),(3,5)] es 7 ya que, como los intervalos (1,4) y (3,5) se solapan, los podemos ver como el intervalo (1,5) que tiene una longitud de 4.

Definir la función

tal que (sumaIntervalos xs) es la suma de las longitudes de los intervalos de xs contando los superpuestos sólo una vez. Por ejemplo,

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Pensamiento

«Si la gente no cree que las matemáticas son simples, es sólo porque no se dan cuenta de lo complicada que es la vida.»

John von Neumann.

Búsqueda de la mina

En este ejercicio, se representa un mapa mediante una lista de listas de la misma longitud donde todos sus elementos son 0 menos uno (que es un 1) que es donde se encuentra la mina. Por ejemplo, en el mapa

la posición de la mina es (2,1).

Definir la función

tal que (posicionMina m) es la posición de la mina en el mapa m, Por ejemplo,

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Pensamiento

«La vida de un matemático está dominada por una insaciable curiosidad, un deseo que raya en la pasión por resolver los problemas que estudia.»

Jean Dieudonné.

El sesgo de Chebyshev

Un número primo distinto de 2 tiene la forma 4k + 1 o 4k + 3. Chebyshev notó en 1853 que la mayoría de las veces hay más números primos de la forma 4k + 3 que números primos de la forma 4k + 1 menores que un número dado. Esto se llama el sesgo de Chebyshev.

Definir las funciones

tales que

  • distribucionPrimosModulo4 es la lista de las ternas (p,a,b) tales que p es un números primo, a es la cantidad de primos menores o iguales que p congruentes con 1 módulo 4 y b es la cantidad de primos menores o iguales que p congruentes con 3 módulo 4. Por ejemplo,

  • empatesRestosModulo4 es la lista de los primos p tales que la cantidad de primos menores o iguales que p congruentes con 1 módulo 4 es igual a la cantidad de primos menores o iguales que p congruentes con 3 módulo 4. Por ejemplo,

  • mayoria1RestosModulo4 es la lista de los primos p tales que la cantidad de primos menores o iguales que p congruentes con 1 módulo 4 es mayor que la cantidad de primos menores o iguales que p congruentes con 3 módulo 4. Por ejemplo,

  • (graficaChebyshev n) dibuja la gráfica de los puntos (p,b-a) donde p es uno de los n primeros primos impares, a es la cantidad de primos menores o iguales que p congruentes con 1 módulo 4 y b es la cantidad de primos menores o iguales que p congruentes con 3 módulo 4. Por ejemplo, (graficaChebyshev 5000) dibuja la figura

Soluciones

[schedule expon=’2020-03-30′ expat=»06:00″]

  • Las soluciones se pueden escribir en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Pensamiento

«El valor de un problema no es tanto el de encontrar la respuesta como el de las ideas e intentos que obliga su resolución.»

Israel Nathan Herstein.

[/schedule]

[schedule on=’2020-03-30′ at=»06:00″]

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

[/schedule]

Primos magnánimos

Un número magnánimo es un número tal que las sumas obtenidas insertando un «+» entre sus dígitos en cualquier posición son números primos. Por ejemplo, 4001 es un número magnánimo porque los números 4+001=5, 40+01=41 y 400+1=401 son primos.

Definir las funciones

tales que

  • (esMagnanimo n) se verifica si n es un número magnánimo. Por ejemplo,

  • primosMagnanimos es la lista de los números primos magnánimos. Por ejemplo,

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Pensamiento

«Existe una distinción entre lo que se puede llamar un problema y lo que puede considerar un ejercicio. Este último sirve para entrenar al en alguna técnica o procedimiento, y requiere poco o ningún original. A diferencia de un ejercicio, un problema, si es apropiado para nivel, debe requerir pensamiento por parte del estudiante. Es imposible exagerar la importancia de los problemas en las matemáticas. Es por medio de los problemas que las matemáticas se desarrollan y se levantan por sí mismas. Cada nuevo descubrimiento en matemáticas es el resultado de un intento de resolver algún problema.»

Howard Eves.