Árbol de subconjuntos

Definir las siguientes funciones

tales que

  • (arbolSubconjuntos xs) es el árbol de los subconjuntos de xs. Por ejemplo.

  • (nNodosArbolSubconjuntos xs) es el número de nodos del árbol de xs. Por ejemplo

  • (sumaNNodos n) es la suma del número de nodos de los árboles de los subconjuntos de [1..k] para 1 <= k <= n. Por ejemplo,

Soluciones

Sucesiones de números consecutivos con suma dada

El número 15 se puede escribir de 5 formas como suma de números naturales consecutivos:

Definir las funciones

tales que

  • (sucesionesConSuma n) es la lista de los pares formados por el primero y por el último elemento de las sucesiones de números naturales consecutivos con suma n. Por ejemplo,

  • (graficaSucesionesConSuma n) dibuja la gráfica del número de formas de escribir los n primeros números como suma de números naturales consecutivos. Por ejemplo, (graficaSucesionesConSuma 100) dibuja
    Sucesiones_de_numeros_consecutivos_con_suma_dada

Soluciones

Operaciones binarias con matrices

Entre dos matrices de la misma dimensión se pueden aplicar distintas operaciones binarias entre los elementos en la misma posición. Por ejemplo, si a y b son las matrices

entonces a+b y a-b son, respectivamente

Definir la función

tal que (opMatriz f p q) es la matriz obtenida aplicando la operación f entre los elementos de p y q de la misma posición. Por ejemplo,

Soluciones

Números tetranacci

Los números tetranacci son una generalización de los números de Fibonacci definidos por

Los primeros números tetranacci son

Definir las funciones

tales que

  • (tetranacci n) es el n-ésimo número tetranacci. Por ejemplo,

  • (graficaTetranacci n) dibuja la gráfica de los cocientes de n primeros pares de número tetranacci. Por ejemplo, (graficaTetranacci 300) dibuja
    Numeros_tetranacci_200

Soluciones

Múltiplos repitunos

El ejercicio 4 de la Olimpiada Matemáticas de 1993 es el siguiente:

Demostrar que para todo número primo p distinto de 2 y de 5, existen infinitos múltiplos de p de la forma 1111……1 (escrito sólo con unos).

Definir la función

tal que (multiplosRepitunos p n) es la lista de los múltiplos repitunos de p (es decir, de la forma 1111…1 escrito sólo con unos), donde p es un número primo distinto de 2 y 5. Por ejemplo,

Comprobar con QuickCheck que para todo primo p mayor que 5 y todo número entero positivo n, existe un mútiplo repituno de p mayor que n.

Soluciones

Máxima longitud de sublistas crecientes

Definir la función

tal que (longitudMayorSublistaCreciente xs) es la el máximo de las longitudes de las sublistas crecientes de xs. Por ejemplo,

Soluciones

Mayores sublistas crecientes

Definir la función

tal que (mayoresCrecientes xs) es la lista de las sublistas crecientes de xs de mayor longitud. Por ejemplo,

Soluciones

Conjetura de Goldbach

Una forma de la conjetura de Golbach afirma que todo entero mayor que 1 se puede escribir como la suma de uno, dos o tres números primos.

Si se define el índice de Goldbach de n > 1 como la mínima cantidad de primos necesarios para que su suma sea n, entonces la conjetura de Goldbach afirma que todos los índices de Goldbach de los enteros mayores que 1 son menores que 4.

Definir las siguientes funciones

tales que

  • (indiceGoldbach n) es el índice de Goldbach de n. Por ejemplo,

  • (graficaGoldbach n) dibuja la gráfica de los índices de Goldbach de los números entre 2 y n. Por ejemplo, (graficaGoldbach 150) dibuja
    Conjetura_de_Goldbach_150

Comprobar con QuickCheck la conjetura de Goldbach anterior.

Soluciones

Particiones primas

Una partición prima de un número natural n es un conjunto de primos cuya suma es n. Por ejemplo, el número 7 tiene 7 particiones primas ya que

Definir la función

tal que (particiones n) es el comjunto de las particiones primas de n. Por ejemplo,

Soluciones

La sucesión de Sylvester

La sucesión de Sylvester es la sucesión que comienza en 2 y sus restantes términos se obtienen multiplicando los anteriores y sumándole 1.

Definir las funciones

tales que

  • (sylvester n) es el n-ésimo término de la sucesión de Sylvester. Por ejemplo,

  • (graficaSylvester d n) dibuja la gráfica de los d últimos dígitos de los n primeros términos de la sucesión de Sylvester. Por ejemplo,
    • (graficaSylvester 3 30) dibuja
      La_sucesion_de_Sylvester_(3,30)
    • (graficaSylvester 4 30) dibuja
      La_sucesion_de_Sylvester_(4,30)
    • (graficaSylvester 5 30) dibuja
      La_sucesion_de_Sylvester_(5,30)

Soluciones

Camino de máxima suma en una matriz

Los caminos desde el extremo superior izquierdo (posición (1,1)) hasta el extremo inferior derecho (posición (3,4)) en la matriz

moviéndose en cada paso una casilla hacia abajo o hacia la derecha, son los siguientes:

Las sumas de los caminos son 32, 41, 36, 40, 40, 35, 39, 34, 38 y 37, respectivamente. El camino de máxima suma es el segundo (1, 7, 12, 8, 4, 9) que tiene una suma de 41.

Definir la función

tal que (caminoMaxSuma m) es un camino de máxima suma en la matriz m desde el extremo superior izquierdo hasta el extremo inferior derecho, moviéndose en cada paso una casilla hacia abajo o hacia la derecha. Por ejemplo,

Soluciones

Máximo de las sumas de los caminos en una matriz

Los caminos desde el extremo superior izquierdo (posición (1,1)) hasta el extremo inferior derecho (posición (3,4)) en la matriz

moviéndose en cada paso una casilla hacia abajo o hacia la derecha, son los siguientes:

Las sumas de los caminos son 32, 41, 36, 40, 40, 35, 39, 34, 38 y 37, respectivamente. El máximo de las suma de los caminos es 41.

Definir la función

tal que (maximaSuma m) es el máximo de las sumas de los caminos en la matriz m desde el extremo superior izquierdo hasta el extremo inferior derecho, moviéndose en cada paso una casilla hacia abajo o hacia la derecha. Por ejemplo,

Soluciones

Caminos en una matriz

Los caminos desde el extremo superior izquierdo (posición (1,1)) hasta el extremo inferior derecho (posición (3,4)) en la matriz

moviéndose en cada paso una casilla hacia abajo o hacia la derecha, son los siguientes:

Definir la función

tal que (caminos m) es la lista de los caminos en la matriz m desde el extremo superior izquierdo hasta el extremo inferior derecho, moviéndose en cada paso una casilla hacia abajo o hacia la derecha. Por ejemplo,

Soluciones

Suma de las alturas de los nodos de un árbol

Las árboles binarios se pueden representar con el siguiente tipo

Por ejemplo, el árbol

se representa por

La altura de cada elemento del árbol es la máxima distancia a las hojas en su rama. Por ejemplo, en el árbol anterior, la altura de 1 es 3, la de 2 es 2, la de 3 es 1, la de 4 es 1 y la de 5 es 1.

Definir la función

tal que (sumaAlturas a) es la suma de las alturas de los elementos de a. Por ejemplo,

Soluciones

La conjetura de Levy

Hyman Levy observó que

y conjeturó que todos los número impares mayores o iguales que 7 se pueden escribir como la suma de un primo y el doble de un primo. El objetivo de los siguientes ejercicios es comprobar la conjetura de Levy.

Definir las siguientes funciones

tales que

  • (descomposicionesLevy x) es la lista de pares de primos (p,q) tales que x = p + 2q. Por ejemplo,

  • (graficaLevy n) dibuja los puntos (x,y) tales que x pertenece a [7,9..7+2x(n-1)] e y es el número de descomposiciones de Levy de x. Por ejemplo, (graficaLevy 200) dibuja
    La_conjetura_de_Levy-200

Comprobar con QuickCheck la conjetura de Levy.

Soluciones

[schedule on=’2018-03-19′ at=»06:00″]

Matrices de Pascal

El triángulo de Pascal es un triángulo de números

construido de la siguiente forma

  • la primera fila está formada por el número 1;
  • las filas siguientes se construyen sumando los números adyacentes de la fila superior y añadiendo un 1 al principio y al final de la fila.

La matriz de Pascal es la matriz cuyas filas son los elementos de la
correspondiente fila del triángulo de Pascal completadas con ceros. Por ejemplo, la matriz de Pascal de orden 6 es

Definir la función

tal que (matrizPascal n) es la matriz de Pascal de orden n. Por ejemplo,

Soluciones

La conjetura de Gilbreath

Partiendo de los 5 primeros números primos y calculando el valor absoluto de la diferencia de cada dos números consecutivos hasta quedarse con un único número se obtiene la siguiente tabla:

Se observa que todas las filas, salvo la inicial, comienzan con el número 1.

Repitiendo el proceso pero empezando con los 8 primeros números primos se obtiene la siguiente tabla:

Se observa que, de nuevo, todas las filas, salvo la inicial, comienza con el número 1.

La conjetura de Gilbreath afirma que si escribimos la sucesión de números primos completa y después construimos las correspondientes sucesiones formadas por el valor absoluto de la resta de cada pareja de números consecutivos, entonces todas esas filas que obtenemos comienzan siempre por 1.

El objetivo de este ejercicio es comprobar experimentalmente dicha conjetura.

Para la representación, usaremos la simétrica de la que hemos comentado anteriormente; es decir,

en la que la primera columna son los números primos y el elemento de la fila i y columna j (con i, j > 1) es el valor absoluto de la diferencia de los elementos (i,j-1) e (i-1,j-1).

Definir las siguientes funciones

tales que

  • (siguiente x ys) es la línea siguiente de la ys que empieza por x en la tabla de Gilbreath; es decir, si ys es [y1,y2,…,yn], entonces (siguiente x ys) es [x,|y1-x|,|y2-|y1-x||,…] Por ejemplo,

  • triangulo es el triángulo de Gilbreath. Por ejemplo,

  • (conjeturaGilbreath n) se verifica si se cumple la conjetura de Gilbreath para los n primeros números primos; es decir, en el triángulo de Gilbreath cuya primera columna son los n primeros números primos, todas las filas a partir de la segunda terminan en 1. Por ejemplo,

Soluciones

Suma de las sumas de los cuadrados de los divisores

La suma de las sumas de los cuadrados de los divisores de los 6 primeros números enteros positivos es

Definir la función

tal que (sumaSumasCuadradosDivisores n) es la suma de las sumas de los cuadrados de los divisores de los n primeros números enteros positivos. Por ejemplo,

Soluciones

Suma de los dígitos de las repeticiones de un número

Dados dos números naturales n y x, su suma reducida se obtiene a partir del número obtenido repitiendo n veces el x sumando sus dígitos hasta obtener un número con sólo un dígito. Por ejemplo, si n es 3 y x es 24 las transformaciones son

Análogamente, si n es 4 y x es 7988 las transformaciones son

Definir las funciones

tales que

  • (sumaReducidaDigitosRepeticiones n x) es la suma reducida de n repeticiones de x. Por ejemplo

  • (grafica n) dibuja la gráfica de los n primeros elementos de la sucesión cuyo elementos k-ésimo es (sumaReducidaDigitosRepeticiones k k). Por ejemplo, (grafica 50) dibuja
    Suma_de_los_digitos_de_las_repeticiones_de_un_numero50

Soluciones

Cruce de listas

Definir la función

tal que (cruce xs ys) es la lista de las listas obtenidas uniendo las listas de xs sin un elemento con las de ys sin un elemento. Por ejemplo,

Comprobar con QuickCheck que el número de elementos de (cruce xs ys) es el producto de los números de elementos de xs y de ys.

Soluciones

Matrices centro simétricas

Una matriz centro simétrica es una matriz cuadrada que es simétrica respecto de su centro. Por ejemplo, de las siguientes matrices, las dos primeras son simétricas y las otras no lo son

Definir la función

tal que (esCentroSimetrica a) se verifica si la matriz a es centro simétrica. Por ejemplo,

Soluciones

Nodos con máxima suma de hijos

Los árboles se pueden representar mediante el siguiente tipo de datos

Por ejemplo, los árboles

se representan por

Definir la función

tal que (nodosSumaMaxima a) es la lista de los nodos del árbol a cuyos hijos tienen máxima suma. Por ejemplo,

Soluciones