Menu Close

Etiqueta: union

Clausura de un conjunto respecto de una función

Un conjunto A está cerrado respecto de una función f si para elemento x de A se tiene que f(x) pertenece a A. La clausura de un conjunto B respecto de una función f es el menor conjunto A que contiene a B y es cerrado respecto de f. Por ejemplo, la clausura de {0,1,2] respecto del opuesto es {-2,-1,0,1,2}.

Definir la función

   clausura :: Ord a => (a -> a) -> [a] -> [a]

tal que (clausura f xs) es la clausura de xs respecto de f. Por ejemplo,

   clausura (\x -> -x) [0,1,2]         ==  [-2,-1,0,1,2]
   clausura (\x -> (x+1) `mod` 5) [0]  ==  [0,1,2,3,4]
   length (clausura (\x -> (x+1) `mod` (10^6)) [0]) == 1000000

Soluciones

module Clausura where
 
import Data.List ((\\), nub, sort, union)
import Test.QuickCheck.HigherOrder (quickCheck')
import qualified Data.Set as S (Set, difference, fromList, map, null, toList, union)
 
-- 1ª solución
-- ===========
 
clausura1 :: Ord a => (a -> a) -> [a] -> [a]
clausura1 f xs
  | esCerrado f xs = sort xs
  | otherwise      = clausura1 f (expansion f xs)
 
-- (esCerrado f xs) se verifica si al aplicar f a cualquier elemento de
-- xs se obtiene un elemento de xs. Por ejemplo,
--    λ> esCerrado (\x -> -x) [0,1,2]
--    False
--    λ> esCerrado (\x -> -x) [0,1,2,-2,-1]
--    True
esCerrado :: Ord a => (a -> a) -> [a] -> Bool
esCerrado f xs = all (`elem` xs) (map f xs)
 
-- (expansion f xs) es la lista (sin repeticiones) obtenidas añadiéndole
-- a xs el resulta de aplicar f a sus elementos. Por ejemplo,
--    expansion (\x -> -x) [0,1,2]  ==  [0,1,2,-1,-2]
expansion :: Ord a => (a -> a) -> [a] -> [a]
expansion f xs = xs `union` map f xs
 
-- 2ª solución
-- ===========
 
clausura2 :: Ord a => (a -> a) -> [a] -> [a]
clausura2 f xs = sort (until (esCerrado f) (expansion f) xs)
 
-- 3ª solución
-- ===========
 
clausura3 :: Ord a => (a -> a) -> [a] -> [a]
clausura3 f xs = aux xs xs
  where aux ys vs | null ns   = sort vs
                  | otherwise = aux ns (vs ++ ns)
          where ns = nub (map f ys) \\ vs
 
-- 4ª solución
-- ===========
 
clausura4 :: Ord a => (a -> a) -> [a] -> [a]
clausura4 f xs = S.toList (clausura4' f (S.fromList xs))
 
clausura4' :: Ord a => (a -> a) -> S.Set a -> S.Set a
clausura4' f xs = aux xs xs
  where aux ys vs | S.null ns = vs
                  | otherwise = aux ns (vs `S.union` ns)
          where ns = S.map f ys `S.difference` vs
 
-- Comprobación de equivalencia
-- ============================
 
-- La propiedad es
prop_clausura :: (Int -> Int) -> [Int] -> Bool
prop_clausura f xs =
  all (== clausura1 f xs')
      [ clausura2 f xs'
      , clausura3 f xs'
      , clausura4 f xs'
      ]
  where xs' = sort (nub xs)
 
-- La comprobación es
--    λ> quickCheck' prop_clausura
--    +++ OK, passed 100 tests.
 
-- Comparación de eficiencia
-- =========================
 
-- La comparación es
--    λ> length (clausura1 (\x -> (x+1) `mod` 800) [0])
--    800
--    (1.95 secs, 213,481,560 bytes)
--    λ> length (clausura2 (\x -> (x+1) `mod` 800) [0])
--    800
--    (1.96 secs, 213,372,824 bytes)
--    λ> length (clausura3 (\x -> (x+1) `mod` 800) [0])
--    800
--    (0.03 secs, 42,055,128 bytes)
--    λ> length (clausura4 (\x -> (x+1) `mod` 800) [0])
--    800
--    (0.01 secs, 1,779,768 bytes)
--
--    λ> length (clausura3 (\x -> (x+1) `mod` (10^4)) [0])
--    10000
--    (2.50 secs, 8,080,105,816 bytes)
--    λ> length (clausura4 (\x -> (x+1) `mod` (10^4)) [0])
--    10000
--    (0.05 secs, 27,186,920 bytes)

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Diferencia simétrica

La diferencia simétrica de dos conjuntos es el conjunto cuyos elementos son aquellos que pertenecen a alguno de los conjuntos iniciales, sin pertenecer a ambos a la vez. Por ejemplo, la diferencia simétrica de {2,5,3} y {4,2,3,7} es {5,4,7}.

Definir la función

   diferenciaSimetrica :: Ord a => [a] -> [a] -> [a]

tal que (diferenciaSimetrica xs ys) es la diferencia simétrica de xs e ys. Por ejemplo,

   diferenciaSimetrica [2,5,3] [4,2,3,7]    ==  [4,5,7]
   diferenciaSimetrica [2,5,3] [5,2,3]      ==  []
   diferenciaSimetrica [2,5,2] [4,2,3,7]    ==  [3,4,5,7]
   diferenciaSimetrica [2,5,2] [4,2,4,7]    ==  [4,5,7]
   diferenciaSimetrica [2,5,2,4] [4,2,4,7]  ==  [5,7]

Soluciones

import Test.QuickCheck
import Data.List ((\\), intersect, nub, sort, union)
import qualified Data.Set as S
 
-- 1ª solución
-- ===========
 
diferenciaSimetrica1 :: Ord a => [a] -> [a] -> [a]
diferenciaSimetrica1 xs ys =
  sort (nub ([x | x <- xs, x `notElem` ys] ++ [y | y <- ys, y `notElem` xs]))
 
-- 2ª solución
-- ===========
 
diferenciaSimetrica2 :: Ord a => [a] -> [a] -> [a]
diferenciaSimetrica2 xs ys =
  sort (nub (filter (`notElem` ys) xs ++ filter (`notElem` xs) ys))
 
-- 3ª solución
-- ===========
 
diferenciaSimetrica3 :: Ord a => [a] -> [a] -> [a]
diferenciaSimetrica3 xs ys =
  sort (nub (union xs ys \\ intersect xs ys))
 
-- 4ª solución
-- ===========
 
diferenciaSimetrica4 :: Ord a => [a] -> [a] -> [a]
diferenciaSimetrica4 xs ys =
  [x | x <- sort (nub (xs ++ ys))
     , x `notElem` xs || x `notElem` ys]
 
-- 5ª solución
-- ===========
 
diferenciaSimetrica5 :: Ord a => [a] -> [a] -> [a]
diferenciaSimetrica5 xs ys =
  S.elems ((xs' `S.union` ys') `S.difference` (xs' `S.intersection` ys'))
  where xs' = S.fromList xs
        ys' = S.fromList ys
 
-- Comprobación de equivalencia
-- ============================
 
-- La propiedad es
prop_diferenciaSimetrica :: [Int] -> [Int] -> Bool
prop_diferenciaSimetrica xs ys =
  all (== diferenciaSimetrica1 xs ys)
      [diferenciaSimetrica2 xs ys,
       diferenciaSimetrica3 xs ys,
       diferenciaSimetrica4 xs ys,
       diferenciaSimetrica5 xs ys]
 
-- La comprobación es
--    λ> quickCheck prop_diferenciaSimetrica
--    +++ OK, passed 100 tests.
 
-- Comparación de eficiencia
-- =========================
 
-- La comparación es
--    λ> length (diferenciaSimetrica1 [1..2*10^4] [2,4..2*10^4])
--    10000
--    (2.34 secs, 10,014,360 bytes)
--    λ> length (diferenciaSimetrica2 [1..2*10^4] [2,4..2*10^4])
--    10000
--    (2.41 secs, 8,174,264 bytes)
--    λ> length (diferenciaSimetrica3 [1..2*10^4] [2,4..2*10^4])
--    10000
--    (5.84 secs, 10,232,006,288 bytes)
--    λ> length (diferenciaSimetrica4 [1..2*10^4] [2,4..2*10^4])
--    10000
--    (5.83 secs, 14,814,184 bytes)
--    λ> length (diferenciaSimetrica5 [1..2*10^4] [2,4..2*10^4])
--    10000
--    (0.02 secs, 7,253,496 bytes)

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Subexpresiones aritméticas

Las expresiones aritméticas pueden representarse usando el siguiente tipo de datos

   data Expr = N Int | S Expr Expr | P Expr Expr  
     deriving (Eq, Ord, Show)

Por ejemplo, la expresión 2*(3+7) se representa por

   P (N 2) (S (N 3) (N 7))

Definir la función

   subexpresiones :: Expr -> Set Expr

tal que (subexpresiones e) es el conjunto de las subexpresiones de e. Por ejemplo,

   λ> subexpresiones (S (N 2) (N 3))
   fromList [N 2,N 3,S (N 2) (N 3)]
   λ> subexpresiones (P (S (N 2) (N 2)) (N 7))
   fromList [N 2,N 7,S (N 2) (N 2),P (S (N 2) (N 2)) (N 7)]

Soluciones

import Data.Set
 
data Expr = N Int | S Expr Expr | P Expr Expr  
  deriving (Eq, Ord, Show)
 
subexpresiones :: Expr -> Set Expr
subexpresiones (N x)   = singleton (N x)
subexpresiones (S i d) =
  S i d `insert` (subexpresiones i `union` subexpresiones d)
subexpresiones (P i d) =
  P i d `insert` (subexpresiones i `union` subexpresiones d)

Conjetura de las familias estables por uniones

La conjetura de las familias estables por uniones fue planteada por Péter Frankl en 1979 y aún sigue abierta.

Una familia de conjuntos es estable por uniones si la unión de dos conjuntos cualesquiera de la familia pertenece a la familia. Por ejemplo, {∅, {1}, {2}, {1,2}, {1,3}, {1,2,3}} es estable por uniones; pero {{1}, {2}, {1,3}, {1,2,3}} no lo es.

La conjetura afirma que toda familia no vacía estable por uniones y distinta de {∅} posee algún elemento que pertenece al menos a la mitad de los conjuntos de la familia.

Definir las funciones

   esEstable :: Ord a => Set (Set a) -> Bool
   familiasEstables :: Ord a => Set a -> Set (Set (Set a))
   mayoritarios :: Ord a => Set (Set a) -> [a]
   conjeturaFrankl :: Int -> Bool

tales que

  • (esEstable f) se verifica si la familia f es estable por uniones. Por ejemplo,
     λ> esEstable (fromList [empty, fromList [1,2], fromList [1..5]])
     True
     λ> esEstable (fromList [empty, fromList [1,7], fromList [1..5]])
     False
     λ> esEstable (fromList [fromList [1,2], singleton 3, fromList [1..3]])
     True
  • (familiasEstables c) es el conjunto de las familias estables por uniones formadas por elementos del conjunto c. Por ejemplo,
     λ> familiasEstables (fromList [1..2])
     fromList
       [ fromList []
       , fromList [fromList []]
       , fromList [fromList [],fromList [1]]
       , fromList [fromList [],fromList [1],fromList [1,2]],
         fromList [fromList [],fromList [1],fromList [1,2],fromList [2]]
       , fromList [fromList [],fromList [1,2]]
       , fromList [fromList [],fromList [1,2],fromList [2]]
       , fromList [fromList [],fromList [2]]
       , fromList [fromList [1]]
       , fromList [fromList [1],fromList [1,2]]
       , fromList [fromList [1],fromList [1,2],fromList [2]]
       , fromList [fromList [1,2]]
       , fromList [fromList [1,2],fromList [2]]
       , fromList [fromList [2]]]
     λ> size (familiasEstables (fromList [1,2]))
     14
     λ> size (familiasEstables (fromList [1..3]))
     122
     λ> size (familiasEstables (fromList [1..4]))
     4960
  • (mayoritarios f) es la lista de elementos que pertenecen al menos a la mitad de los conjuntos de la familia f. Por ejemplo,
     mayoritarios (fromList [empty, fromList [1,3], fromList [3,5]]) == [3]
     mayoritarios (fromList [empty, fromList [1,3], fromList [4,5]]) == []
  • (conjeturaFrankl n) se verifica si para toda familia f formada por elementos del conjunto {1,2,…,n} no vacía, estable por uniones y distinta de {∅} posee algún elemento que pertenece al menos a la mitad de los conjuntos de f. Por ejemplo.
     conjeturaFrankl 2  ==  True
     conjeturaFrankl 3  ==  True
     conjeturaFrankl 4  ==  True

Soluciones

 
import Data.Set  as S ( Set
                      , delete
                      , deleteFindMin
                      , empty
                      , filter
                      , fromList
                      , insert
                      , map
                      , member
                      , null
                      , singleton
                      , size
                      , toList
                      , union
                      , unions
                      )
import Data.List as L ( filter
                      , null
                      )
 
esEstable :: Ord a => Set (Set a) -> Bool
esEstable xss =
  and [ys `S.union` zs `member` xss | (ys,yss) <- selecciones xss
                                    , zs <- toList yss]
 
-- (seleccciones xs) es la lista de los pares formada por un elemento de
-- xs y los restantes elementos. Por ejemplo,
--    λ> selecciones (fromList [3,2,5])
--    [(2,fromList [3,5]),(3,fromList [2,5]),(5,fromList [2,3])]
selecciones :: Ord a => Set a -> [(a,Set a)]
selecciones xs =
  [(x,delete x xs) | x <- toList xs] 
 
familiasEstables :: Ord a => Set a -> Set (Set (Set a))
familiasEstables xss =
  S.filter esEstable (familias xss)
 
-- (familias c) es la familia formadas con elementos de c. Por ejemplo,
--    λ> mapM_ print (familias (fromList [1,2]))
--    fromList []
--    fromList [fromList []]
--    fromList [fromList [],fromList [1]]
--    fromList [fromList [],fromList [1],fromList [1,2]]
--    fromList [fromList [],fromList [1],fromList [1,2],fromList [2]]
--    fromList [fromList [],fromList [1],fromList [2]]
--    fromList [fromList [],fromList [1,2]]
--    fromList [fromList [],fromList [1,2],fromList [2]]
--    fromList [fromList [],fromList [2]]
--    fromList [fromList [1]]
--    fromList [fromList [1],fromList [1,2]]
--    fromList [fromList [1],fromList [1,2],fromList [2]]
--    fromList [fromList [1],fromList [2]]
--    fromList [fromList [1,2]]
--    fromList [fromList [1,2],fromList [2]]
--    fromList [fromList [2]]
--    λ> size (familias (fromList [1,2]))
--    16
--    λ> size (familias (fromList [1,2,3]))
--    256
--    λ> size (familias (fromList [1,2,3,4]))
--    65536
familias :: Ord a => Set a -> Set (Set (Set a))
familias c =
  subconjuntos (subconjuntos c)
 
-- (subconjuntos c) es el conjunto de los subconjuntos de c. Por ejemplo,
--    λ> mapM_ print (subconjuntos (fromList [1,2,3]))
--    fromList []
--    fromList [1]
--    fromList [1,2]
--    fromList [1,2,3]
--    fromList [1,3]
--    fromList [2]
--    fromList [2,3]
--    fromList [3]
subconjuntos :: Ord a => Set a -> Set (Set a)
subconjuntos c
  | S.null c  = singleton empty
  | otherwise = S.map (insert x) sr `union` sr
  where (x,rc) = deleteFindMin c
        sr     = subconjuntos rc
 
-- (elementosFamilia f) es el conjunto de los elementos de los elementos
-- de la familia f. Por ejemplo, 
--    λ> elementosFamilia (fromList [empty, fromList [1,2], fromList [2,5]])
--    fromList [1,2,5]
elementosFamilia :: Ord a => Set (Set a) -> Set a
elementosFamilia = unions . toList
 
-- (nOcurrencias f x) es el número de conjuntos de la familia f a los
-- que pertenece el elemento x. Por ejemplo,
--    nOcurrencias (fromList [empty, fromList [1,3], fromList [3,5]]) 3 == 2
--    nOcurrencias (fromList [empty, fromList [1,3], fromList [3,5]]) 4 == 0
--    nOcurrencias (fromList [empty, fromList [1,3], fromList [3,5]]) 5 == 1
nOcurrencias :: Ord a => Set (Set a) -> a -> Int
nOcurrencias f x =
  length (L.filter (x `member`) (toList f))
 
mayoritarios :: Ord a => Set (Set a) -> [a]
mayoritarios f =
  [x | x <- toList (elementosFamilia f)
     , nOcurrencias f x >= n]
  where n = (1 + size f) `div` 2
 
conjeturaFrankl :: Int -> Bool
conjeturaFrankl n =
  and [ not (L.null (mayoritarios f))
      | f <- fs
      , f /= fromList []
      , f /= fromList [empty]]
  where fs = toList (familiasEstables (fromList [1..n]))
 
 
-- conjeturaFrankl' :: Int -> Bool
conjeturaFrankl' n =
  [f | f <- fs
     , L.null (mayoritarios f)
     , f /= fromList []
     , f /= fromList [empty]]
  where fs = toList (familiasEstables (fromList [1..n]))

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Conjetura de las familias estables por uniones

La conjetura de las familias estables por uniones fue planteada por Péter Frankl en 1979 y aún sigue abierta.

Una familia de conjuntos es estable por uniones si la unión de dos conjuntos cualesquiera de la familia pertenece a la familia. Por ejemplo, {∅, {1}, {2}, {1,2}, {1,3}, {1,2,3}} es estable por uniones; pero {{1}, {2}, {1,3}, {1,2,3}} no lo es.

La conjetura afirma que toda familia no vacía estable por uniones y distinta de {∅} posee algún elemento que pertenece al menos a la mitad de los conjuntos de la familia.

Definir las funciones

   esEstable :: Ord a => Set (Set a) -> Bool
   familiasEstables :: Ord a => Set a -> Set (Set (Set a))
   mayoritarios :: Ord a => Set (Set a) -> [a]
   conjeturaFrankl :: Int -> Bool

tales que

  • (esEstable f) se verifica si la familia f es estable por uniones. Por ejemplo,
     λ> esEstable (fromList [empty, fromList [1,2], fromList [1..5]])
     True
     λ> esEstable (fromList [empty, fromList [1,7], fromList [1..5]])
     False
     λ> esEstable (fromList [fromList [1,2], singleton 3, fromList [1..3]])
     True
  • (familiasEstables c) es el conjunto de las familias estables por uniones formadas por elementos del conjunto c. Por ejemplo,
     λ> familiasEstables (fromList [1..2])
     fromList
       [ fromList []
       , fromList [fromList []]
       , fromList [fromList [],fromList [1]]
       , fromList [fromList [],fromList [1],fromList [1,2]],
         fromList [fromList [],fromList [1],fromList [1,2],fromList [2]]
       , fromList [fromList [],fromList [1,2]]
       , fromList [fromList [],fromList [1,2],fromList [2]]
       , fromList [fromList [],fromList [2]]
       , fromList [fromList [1]]
       , fromList [fromList [1],fromList [1,2]]
       , fromList [fromList [1],fromList [1,2],fromList [2]]
       , fromList [fromList [1,2]]
       , fromList [fromList [1,2],fromList [2]]
       , fromList [fromList [2]]]
     λ> size (familiasEstables (fromList [1,2]))
     14
     λ> size (familiasEstables (fromList [1..3]))
     122
     λ> size (familiasEstables (fromList [1..4]))
     4960
  • (mayoritarios f) es la lista de elementos que pertenecen al menos a la mitad de los conjuntos de la familia f. Por ejemplo,
     mayoritarios (fromList [empty, fromList [1,3], fromList [3,5]]) == [3]
     mayoritarios (fromList [empty, fromList [1,3], fromList [4,5]]) == []
  • (conjeturaFrankl n) se verifica si para toda familia f formada por elementos del conjunto {1,2,…,n} no vacía, estable por uniones y distinta de {∅} posee algún elemento que pertenece al menos a la mitad de los conjuntos de f. Por ejemplo.
     conjeturaFrankl 2  ==  True
     conjeturaFrankl 3  ==  True
     conjeturaFrankl 4  ==  True

Soluciones

import Data.Set  as S ( Set
                      , delete
                      , deleteFindMin
                      , empty
                      , filter
                      , fromList
                      , insert
                      , map
                      , member
                      , null
                      , singleton
                      , size
                      , toList
                      , union
                      , unions
                      )
import Data.List as L ( filter
                      , null
                      )
 
esEstable :: Ord a => Set (Set a) -> Bool
esEstable xss =
  and [ys `S.union` zs `member` xss | (ys,yss) <- selecciones xss
                                    , zs <- toList yss]
 
-- (seleccciones xs) es la lista de los pares formada por un elemento de
-- xs y los restantes elementos. Por ejemplo,
--    λ> selecciones (fromList [3,2,5])
--    [(2,fromList [3,5]),(3,fromList [2,5]),(5,fromList [2,3])]
selecciones :: Ord a => Set a -> [(a,Set a)]
selecciones xs =
  [(x,delete x xs) | x <- toList xs] 
 
familiasEstables :: Ord a => Set a -> Set (Set (Set a))
familiasEstables xss =
  S.filter esEstable (familias xss)
 
-- (familias c) es la familia formadas con elementos de c. Por ejemplo,
--    λ> mapM_ print (familias (fromList [1,2]))
--    fromList []
--    fromList [fromList []]
--    fromList [fromList [],fromList [1]]
--    fromList [fromList [],fromList [1],fromList [1,2]]
--    fromList [fromList [],fromList [1],fromList [1,2],fromList [2]]
--    fromList [fromList [],fromList [1],fromList [2]]
--    fromList [fromList [],fromList [1,2]]
--    fromList [fromList [],fromList [1,2],fromList [2]]
--    fromList [fromList [],fromList [2]]
--    fromList [fromList [1]]
--    fromList [fromList [1],fromList [1,2]]
--    fromList [fromList [1],fromList [1,2],fromList [2]]
--    fromList [fromList [1],fromList [2]]
--    fromList [fromList [1,2]]
--    fromList [fromList [1,2],fromList [2]]
--    fromList [fromList [2]]
--    λ> size (familias (fromList [1,2]))
--    16
--    λ> size (familias (fromList [1,2,3]))
--    256
--    λ> size (familias (fromList [1,2,3,4]))
--    65536
familias :: Ord a => Set a -> Set (Set (Set a))
familias c =
  subconjuntos (subconjuntos c)
 
-- (subconjuntos c) es el conjunto de los subconjuntos de c. Por ejemplo,
--    λ> mapM_ print (subconjuntos (fromList [1,2,3]))
--    fromList []
--    fromList [1]
--    fromList [1,2]
--    fromList [1,2,3]
--    fromList [1,3]
--    fromList [2]
--    fromList [2,3]
--    fromList [3]
subconjuntos :: Ord a => Set a -> Set (Set a)
subconjuntos c
  | S.null c  = singleton empty
  | otherwise = S.map (insert x) sr `union` sr
  where (x,rc) = deleteFindMin c
        sr     = subconjuntos rc
 
-- (elementosFamilia f) es el conjunto de los elementos de los elementos
-- de la familia f. Por ejemplo, 
--    λ> elementosFamilia (fromList [empty, fromList [1,2], fromList [2,5]])
--    fromList [1,2,5]
elementosFamilia :: Ord a => Set (Set a) -> Set a
elementosFamilia = unions . toList
 
-- (nOcurrencias f x) es el número de conjuntos de la familia f a los
-- que pertenece el elemento x. Por ejemplo,
--    nOcurrencias (fromList [empty, fromList [1,3], fromList [3,5]]) 3 == 2
--    nOcurrencias (fromList [empty, fromList [1,3], fromList [3,5]]) 4 == 0
--    nOcurrencias (fromList [empty, fromList [1,3], fromList [3,5]]) 5 == 1
nOcurrencias :: Ord a => Set (Set a) -> a -> Int
nOcurrencias f x =
  length (L.filter (x `member`) (toList f))
 
mayoritarios :: Ord a => Set (Set a) -> [a]
mayoritarios f =
  [x | x <- toList (elementosFamilia f)
     , nOcurrencias f x >= n]
  where n = (1 + size f) `div` 2
 
conjeturaFrankl :: Int -> Bool
conjeturaFrankl n =
  and [ not (L.null (mayoritarios f))
      | f <- fs
      , f /= fromList []
      , f /= fromList [empty]]
  where fs = toList (familiasEstables (fromList [1..n]))
 
 
-- conjeturaFrankl' :: Int -> Bool
conjeturaFrankl' n =
  [f | f <- fs
     , L.null (mayoritarios f)
     , f /= fromList []
     , f /= fromList [empty]]
  where fs = toList (familiasEstables (fromList [1..n]))

Pensamiento

Pero tampoco es razón
desdeñar
consejo que es confesión.

Antonio Machado