Menu Close

Etiqueta: union

Clausura de un conjunto respecto de una función

Un conjunto A está cerrado respecto de una función f si para elemento x de A se tiene que f(x) pertenece a A. La clausura de un conjunto B respecto de una función f es el menor conjunto A que contiene a B y es cerrado respecto de f. Por ejemplo, la clausura de {0,1,2] respecto del opuesto es {-2,-1,0,1,2}.

Definir la función

   clausura :: Ord a => (a -> a) -> [a] -> [a]

tal que (clausura f xs) es la clausura de xs respecto de f. Por ejemplo,

   clausura (\x -> -x) [0,1,2]         ==  [-2,-1,0,1,2]
   clausura (\x -> (x+1) `mod` 5) [0]  ==  [0,1,2,3,4]
   length (clausura (\x -> (x+1) `mod` (10^6)) [0]) == 1000000

Diferencia simétrica

La diferencia simétrica de dos conjuntos es el conjunto cuyos elementos son aquellos que pertenecen a alguno de los conjuntos iniciales, sin pertenecer a ambos a la vez. Por ejemplo, la diferencia simétrica de {2,5,3} y {4,2,3,7} es {5,4,7}.

Definir la función

   diferenciaSimetrica :: Ord a => [a] -> [a] -> [a]

tal que (diferenciaSimetrica xs ys) es la diferencia simétrica de xs e ys. Por ejemplo,

   diferenciaSimetrica [2,5,3] [4,2,3,7]    ==  [4,5,7]
   diferenciaSimetrica [2,5,3] [5,2,3]      ==  []
   diferenciaSimetrica [2,5,2] [4,2,3,7]    ==  [3,4,5,7]
   diferenciaSimetrica [2,5,2] [4,2,4,7]    ==  [4,5,7]
   diferenciaSimetrica [2,5,2,4] [4,2,4,7]  ==  [5,7]

Soluciones

import Test.QuickCheck
import Data.List ((\\), intersect, nub, sort, union)
import qualified Data.Set as S
 
-- 1ª solución
-- ===========
 
diferenciaSimetrica1 :: Ord a => [a] -> [a] -> [a]
diferenciaSimetrica1 xs ys =
  sort (nub ([x | x <- xs, x `notElem` ys] ++ [y | y <- ys, y `notElem` xs]))
 
-- 2ª solución
-- ===========
 
diferenciaSimetrica2 :: Ord a => [a] -> [a] -> [a]
diferenciaSimetrica2 xs ys =
  sort (nub (filter (`notElem` ys) xs ++ filter (`notElem` xs) ys))
 
-- 3ª solución
-- ===========
 
diferenciaSimetrica3 :: Ord a => [a] -> [a] -> [a]
diferenciaSimetrica3 xs ys =
  sort (nub (union xs ys \\ intersect xs ys))
 
-- 4ª solución
-- ===========
 
diferenciaSimetrica4 :: Ord a => [a] -> [a] -> [a]
diferenciaSimetrica4 xs ys =
  [x | x <- sort (nub (xs ++ ys))
     , x `notElem` xs || x `notElem` ys]
 
-- 5ª solución
-- ===========
 
diferenciaSimetrica5 :: Ord a => [a] -> [a] -> [a]
diferenciaSimetrica5 xs ys =
  S.elems ((xs' `S.union` ys') `S.difference` (xs' `S.intersection` ys'))
  where xs' = S.fromList xs
        ys' = S.fromList ys
 
-- Comprobación de equivalencia
-- ============================
 
-- La propiedad es
prop_diferenciaSimetrica :: [Int] -> [Int] -> Bool
prop_diferenciaSimetrica xs ys =
  all (== diferenciaSimetrica1 xs ys)
      [diferenciaSimetrica2 xs ys,
       diferenciaSimetrica3 xs ys,
       diferenciaSimetrica4 xs ys,
       diferenciaSimetrica5 xs ys]
 
-- La comprobación es
--    λ> quickCheck prop_diferenciaSimetrica
--    +++ OK, passed 100 tests.
 
-- Comparación de eficiencia
-- =========================
 
-- La comparación es
--    λ> length (diferenciaSimetrica1 [1..2*10^4] [2,4..2*10^4])
--    10000
--    (2.34 secs, 10,014,360 bytes)
--    λ> length (diferenciaSimetrica2 [1..2*10^4] [2,4..2*10^4])
--    10000
--    (2.41 secs, 8,174,264 bytes)
--    λ> length (diferenciaSimetrica3 [1..2*10^4] [2,4..2*10^4])
--    10000
--    (5.84 secs, 10,232,006,288 bytes)
--    λ> length (diferenciaSimetrica4 [1..2*10^4] [2,4..2*10^4])
--    10000
--    (5.83 secs, 14,814,184 bytes)
--    λ> length (diferenciaSimetrica5 [1..2*10^4] [2,4..2*10^4])
--    10000
--    (0.02 secs, 7,253,496 bytes)

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Subexpresiones aritméticas

Las expresiones aritméticas pueden representarse usando el siguiente tipo de datos

   data Expr = N Int | S Expr Expr | P Expr Expr  
     deriving (Eq, Ord, Show)

Por ejemplo, la expresión 2*(3+7) se representa por

   P (N 2) (S (N 3) (N 7))

Definir la función

   subexpresiones :: Expr -> Set Expr

tal que (subexpresiones e) es el conjunto de las subexpresiones de e. Por ejemplo,

   λ> subexpresiones (S (N 2) (N 3))
   fromList [N 2,N 3,S (N 2) (N 3)]
   λ> subexpresiones (P (S (N 2) (N 2)) (N 7))
   fromList [N 2,N 7,S (N 2) (N 2),P (S (N 2) (N 2)) (N 7)]

Soluciones

import Data.Set
 
data Expr = N Int | S Expr Expr | P Expr Expr  
  deriving (Eq, Ord, Show)
 
subexpresiones :: Expr -> Set Expr
subexpresiones (N x)   = singleton (N x)
subexpresiones (S i d) =
  S i d `insert` (subexpresiones i `union` subexpresiones d)
subexpresiones (P i d) =
  P i d `insert` (subexpresiones i `union` subexpresiones d)

Conjetura de las familias estables por uniones

La conjetura de las familias estables por uniones fue planteada por Péter Frankl en 1979 y aún sigue abierta.

Una familia de conjuntos es estable por uniones si la unión de dos conjuntos cualesquiera de la familia pertenece a la familia. Por ejemplo, {∅, {1}, {2}, {1,2}, {1,3}, {1,2,3}} es estable por uniones; pero {{1}, {2}, {1,3}, {1,2,3}} no lo es.

La conjetura afirma que toda familia no vacía estable por uniones y distinta de {∅} posee algún elemento que pertenece al menos a la mitad de los conjuntos de la familia.

Definir las funciones

   esEstable :: Ord a => Set (Set a) -> Bool
   familiasEstables :: Ord a => Set a -> Set (Set (Set a))
   mayoritarios :: Ord a => Set (Set a) -> [a]
   conjeturaFrankl :: Int -> Bool

tales que

  • (esEstable f) se verifica si la familia f es estable por uniones. Por ejemplo,
     λ> esEstable (fromList [empty, fromList [1,2], fromList [1..5]])
     True
     λ> esEstable (fromList [empty, fromList [1,7], fromList [1..5]])
     False
     λ> esEstable (fromList [fromList [1,2], singleton 3, fromList [1..3]])
     True
  • (familiasEstables c) es el conjunto de las familias estables por uniones formadas por elementos del conjunto c. Por ejemplo,
     λ> familiasEstables (fromList [1..2])
     fromList
       [ fromList []
       , fromList [fromList []]
       , fromList [fromList [],fromList [1]]
       , fromList [fromList [],fromList [1],fromList [1,2]],
         fromList [fromList [],fromList [1],fromList [1,2],fromList [2]]
       , fromList [fromList [],fromList [1,2]]
       , fromList [fromList [],fromList [1,2],fromList [2]]
       , fromList [fromList [],fromList [2]]
       , fromList [fromList [1]]
       , fromList [fromList [1],fromList [1,2]]
       , fromList [fromList [1],fromList [1,2],fromList [2]]
       , fromList [fromList [1,2]]
       , fromList [fromList [1,2],fromList [2]]
       , fromList [fromList [2]]]
     λ> size (familiasEstables (fromList [1,2]))
     14
     λ> size (familiasEstables (fromList [1..3]))
     122
     λ> size (familiasEstables (fromList [1..4]))
     4960
  • (mayoritarios f) es la lista de elementos que pertenecen al menos a la mitad de los conjuntos de la familia f. Por ejemplo,
     mayoritarios (fromList [empty, fromList [1,3], fromList [3,5]]) == [3]
     mayoritarios (fromList [empty, fromList [1,3], fromList [4,5]]) == []
  • (conjeturaFrankl n) se verifica si para toda familia f formada por elementos del conjunto {1,2,…,n} no vacía, estable por uniones y distinta de {∅} posee algún elemento que pertenece al menos a la mitad de los conjuntos de f. Por ejemplo.
     conjeturaFrankl 2  ==  True
     conjeturaFrankl 3  ==  True
     conjeturaFrankl 4  ==  True

Soluciones

 
import Data.Set  as S ( Set
                      , delete
                      , deleteFindMin
                      , empty
                      , filter
                      , fromList
                      , insert
                      , map
                      , member
                      , null
                      , singleton
                      , size
                      , toList
                      , union
                      , unions
                      )
import Data.List as L ( filter
                      , null
                      )
 
esEstable :: Ord a => Set (Set a) -> Bool
esEstable xss =
  and [ys `S.union` zs `member` xss | (ys,yss) <- selecciones xss
                                    , zs <- toList yss]
 
-- (seleccciones xs) es la lista de los pares formada por un elemento de
-- xs y los restantes elementos. Por ejemplo,
--    λ> selecciones (fromList [3,2,5])
--    [(2,fromList [3,5]),(3,fromList [2,5]),(5,fromList [2,3])]
selecciones :: Ord a => Set a -> [(a,Set a)]
selecciones xs =
  [(x,delete x xs) | x <- toList xs] 
 
familiasEstables :: Ord a => Set a -> Set (Set (Set a))
familiasEstables xss =
  S.filter esEstable (familias xss)
 
-- (familias c) es la familia formadas con elementos de c. Por ejemplo,
--    λ> mapM_ print (familias (fromList [1,2]))
--    fromList []
--    fromList [fromList []]
--    fromList [fromList [],fromList [1]]
--    fromList [fromList [],fromList [1],fromList [1,2]]
--    fromList [fromList [],fromList [1],fromList [1,2],fromList [2]]
--    fromList [fromList [],fromList [1],fromList [2]]
--    fromList [fromList [],fromList [1,2]]
--    fromList [fromList [],fromList [1,2],fromList [2]]
--    fromList [fromList [],fromList [2]]
--    fromList [fromList [1]]
--    fromList [fromList [1],fromList [1,2]]
--    fromList [fromList [1],fromList [1,2],fromList [2]]
--    fromList [fromList [1],fromList [2]]
--    fromList [fromList [1,2]]
--    fromList [fromList [1,2],fromList [2]]
--    fromList [fromList [2]]
--    λ> size (familias (fromList [1,2]))
--    16
--    λ> size (familias (fromList [1,2,3]))
--    256
--    λ> size (familias (fromList [1,2,3,4]))
--    65536
familias :: Ord a => Set a -> Set (Set (Set a))
familias c =
  subconjuntos (subconjuntos c)
 
-- (subconjuntos c) es el conjunto de los subconjuntos de c. Por ejemplo,
--    λ> mapM_ print (subconjuntos (fromList [1,2,3]))
--    fromList []
--    fromList [1]
--    fromList [1,2]
--    fromList [1,2,3]
--    fromList [1,3]
--    fromList [2]
--    fromList [2,3]
--    fromList [3]
subconjuntos :: Ord a => Set a -> Set (Set a)
subconjuntos c
  | S.null c  = singleton empty
  | otherwise = S.map (insert x) sr `union` sr
  where (x,rc) = deleteFindMin c
        sr     = subconjuntos rc
 
-- (elementosFamilia f) es el conjunto de los elementos de los elementos
-- de la familia f. Por ejemplo, 
--    λ> elementosFamilia (fromList [empty, fromList [1,2], fromList [2,5]])
--    fromList [1,2,5]
elementosFamilia :: Ord a => Set (Set a) -> Set a
elementosFamilia = unions . toList
 
-- (nOcurrencias f x) es el número de conjuntos de la familia f a los
-- que pertenece el elemento x. Por ejemplo,
--    nOcurrencias (fromList [empty, fromList [1,3], fromList [3,5]]) 3 == 2
--    nOcurrencias (fromList [empty, fromList [1,3], fromList [3,5]]) 4 == 0
--    nOcurrencias (fromList [empty, fromList [1,3], fromList [3,5]]) 5 == 1
nOcurrencias :: Ord a => Set (Set a) -> a -> Int
nOcurrencias f x =
  length (L.filter (x `member`) (toList f))
 
mayoritarios :: Ord a => Set (Set a) -> [a]
mayoritarios f =
  [x | x <- toList (elementosFamilia f)
     , nOcurrencias f x >= n]
  where n = (1 + size f) `div` 2
 
conjeturaFrankl :: Int -> Bool
conjeturaFrankl n =
  and [ not (L.null (mayoritarios f))
      | f <- fs
      , f /= fromList []
      , f /= fromList [empty]]
  where fs = toList (familiasEstables (fromList [1..n]))
 
 
-- conjeturaFrankl' :: Int -> Bool
conjeturaFrankl' n =
  [f | f <- fs
     , L.null (mayoritarios f)
     , f /= fromList []
     , f /= fromList [empty]]
  where fs = toList (familiasEstables (fromList [1..n]))

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Conjetura de las familias estables por uniones

La conjetura de las familias estables por uniones fue planteada por Péter Frankl en 1979 y aún sigue abierta.

Una familia de conjuntos es estable por uniones si la unión de dos conjuntos cualesquiera de la familia pertenece a la familia. Por ejemplo, {∅, {1}, {2}, {1,2}, {1,3}, {1,2,3}} es estable por uniones; pero {{1}, {2}, {1,3}, {1,2,3}} no lo es.

La conjetura afirma que toda familia no vacía estable por uniones y distinta de {∅} posee algún elemento que pertenece al menos a la mitad de los conjuntos de la familia.

Definir las funciones

   esEstable :: Ord a => Set (Set a) -> Bool
   familiasEstables :: Ord a => Set a -> Set (Set (Set a))
   mayoritarios :: Ord a => Set (Set a) -> [a]
   conjeturaFrankl :: Int -> Bool

tales que

  • (esEstable f) se verifica si la familia f es estable por uniones. Por ejemplo,
     λ> esEstable (fromList [empty, fromList [1,2], fromList [1..5]])
     True
     λ> esEstable (fromList [empty, fromList [1,7], fromList [1..5]])
     False
     λ> esEstable (fromList [fromList [1,2], singleton 3, fromList [1..3]])
     True
  • (familiasEstables c) es el conjunto de las familias estables por uniones formadas por elementos del conjunto c. Por ejemplo,
     λ> familiasEstables (fromList [1..2])
     fromList
       [ fromList []
       , fromList [fromList []]
       , fromList [fromList [],fromList [1]]
       , fromList [fromList [],fromList [1],fromList [1,2]],
         fromList [fromList [],fromList [1],fromList [1,2],fromList [2]]
       , fromList [fromList [],fromList [1,2]]
       , fromList [fromList [],fromList [1,2],fromList [2]]
       , fromList [fromList [],fromList [2]]
       , fromList [fromList [1]]
       , fromList [fromList [1],fromList [1,2]]
       , fromList [fromList [1],fromList [1,2],fromList [2]]
       , fromList [fromList [1,2]]
       , fromList [fromList [1,2],fromList [2]]
       , fromList [fromList [2]]]
     λ> size (familiasEstables (fromList [1,2]))
     14
     λ> size (familiasEstables (fromList [1..3]))
     122
     λ> size (familiasEstables (fromList [1..4]))
     4960
  • (mayoritarios f) es la lista de elementos que pertenecen al menos a la mitad de los conjuntos de la familia f. Por ejemplo,
     mayoritarios (fromList [empty, fromList [1,3], fromList [3,5]]) == [3]
     mayoritarios (fromList [empty, fromList [1,3], fromList [4,5]]) == []
  • (conjeturaFrankl n) se verifica si para toda familia f formada por elementos del conjunto {1,2,…,n} no vacía, estable por uniones y distinta de {∅} posee algún elemento que pertenece al menos a la mitad de los conjuntos de f. Por ejemplo.
     conjeturaFrankl 2  ==  True
     conjeturaFrankl 3  ==  True
     conjeturaFrankl 4  ==  True

Soluciones

import Data.Set  as S ( Set
                      , delete
                      , deleteFindMin
                      , empty
                      , filter
                      , fromList
                      , insert
                      , map
                      , member
                      , null
                      , singleton
                      , size
                      , toList
                      , union
                      , unions
                      )
import Data.List as L ( filter
                      , null
                      )
 
esEstable :: Ord a => Set (Set a) -> Bool
esEstable xss =
  and [ys `S.union` zs `member` xss | (ys,yss) <- selecciones xss
                                    , zs <- toList yss]
 
-- (seleccciones xs) es la lista de los pares formada por un elemento de
-- xs y los restantes elementos. Por ejemplo,
--    λ> selecciones (fromList [3,2,5])
--    [(2,fromList [3,5]),(3,fromList [2,5]),(5,fromList [2,3])]
selecciones :: Ord a => Set a -> [(a,Set a)]
selecciones xs =
  [(x,delete x xs) | x <- toList xs] 
 
familiasEstables :: Ord a => Set a -> Set (Set (Set a))
familiasEstables xss =
  S.filter esEstable (familias xss)
 
-- (familias c) es la familia formadas con elementos de c. Por ejemplo,
--    λ> mapM_ print (familias (fromList [1,2]))
--    fromList []
--    fromList [fromList []]
--    fromList [fromList [],fromList [1]]
--    fromList [fromList [],fromList [1],fromList [1,2]]
--    fromList [fromList [],fromList [1],fromList [1,2],fromList [2]]
--    fromList [fromList [],fromList [1],fromList [2]]
--    fromList [fromList [],fromList [1,2]]
--    fromList [fromList [],fromList [1,2],fromList [2]]
--    fromList [fromList [],fromList [2]]
--    fromList [fromList [1]]
--    fromList [fromList [1],fromList [1,2]]
--    fromList [fromList [1],fromList [1,2],fromList [2]]
--    fromList [fromList [1],fromList [2]]
--    fromList [fromList [1,2]]
--    fromList [fromList [1,2],fromList [2]]
--    fromList [fromList [2]]
--    λ> size (familias (fromList [1,2]))
--    16
--    λ> size (familias (fromList [1,2,3]))
--    256
--    λ> size (familias (fromList [1,2,3,4]))
--    65536
familias :: Ord a => Set a -> Set (Set (Set a))
familias c =
  subconjuntos (subconjuntos c)
 
-- (subconjuntos c) es el conjunto de los subconjuntos de c. Por ejemplo,
--    λ> mapM_ print (subconjuntos (fromList [1,2,3]))
--    fromList []
--    fromList [1]
--    fromList [1,2]
--    fromList [1,2,3]
--    fromList [1,3]
--    fromList [2]
--    fromList [2,3]
--    fromList [3]
subconjuntos :: Ord a => Set a -> Set (Set a)
subconjuntos c
  | S.null c  = singleton empty
  | otherwise = S.map (insert x) sr `union` sr
  where (x,rc) = deleteFindMin c
        sr     = subconjuntos rc
 
-- (elementosFamilia f) es el conjunto de los elementos de los elementos
-- de la familia f. Por ejemplo, 
--    λ> elementosFamilia (fromList [empty, fromList [1,2], fromList [2,5]])
--    fromList [1,2,5]
elementosFamilia :: Ord a => Set (Set a) -> Set a
elementosFamilia = unions . toList
 
-- (nOcurrencias f x) es el número de conjuntos de la familia f a los
-- que pertenece el elemento x. Por ejemplo,
--    nOcurrencias (fromList [empty, fromList [1,3], fromList [3,5]]) 3 == 2
--    nOcurrencias (fromList [empty, fromList [1,3], fromList [3,5]]) 4 == 0
--    nOcurrencias (fromList [empty, fromList [1,3], fromList [3,5]]) 5 == 1
nOcurrencias :: Ord a => Set (Set a) -> a -> Int
nOcurrencias f x =
  length (L.filter (x `member`) (toList f))
 
mayoritarios :: Ord a => Set (Set a) -> [a]
mayoritarios f =
  [x | x <- toList (elementosFamilia f)
     , nOcurrencias f x >= n]
  where n = (1 + size f) `div` 2
 
conjeturaFrankl :: Int -> Bool
conjeturaFrankl n =
  and [ not (L.null (mayoritarios f))
      | f <- fs
      , f /= fromList []
      , f /= fromList [empty]]
  where fs = toList (familiasEstables (fromList [1..n]))
 
 
-- conjeturaFrankl' :: Int -> Bool
conjeturaFrankl' n =
  [f | f <- fs
     , L.null (mayoritarios f)
     , f /= fromList []
     , f /= fromList [empty]]
  where fs = toList (familiasEstables (fromList [1..n]))

Pensamiento

Pero tampoco es razón
desdeñar
consejo que es confesión.

Antonio Machado

Subexpresiones aritméticas

Las expresiones aritméticas pueden representarse usando el siguiente tipo de datos

   data Expr = N Int | S Expr Expr | P Expr Expr  
     deriving (Eq, Ord, Show)

Por ejemplo, la expresión 2*(3+7) se representa por

   P (N 2) (S (N 3) (N 7))

Definir la función

   subexpresiones :: Expr -> Set Expr

tal que (subexpresiones e) es el conjunto de las subexpresiones de e. Por ejemplo,

   λ> subexpresiones (S (N 2) (N 3))
   fromList [N 2,N 3,S (N 2) (N 3)]
   λ> subexpresiones (P (S (N 2) (N 2)) (N 7))
   fromList [N 2,N 7,S (N 2) (N 2),P (S (N 2) (N 2)) (N 7)]

Soluciones

import Data.Set
 
data Expr = N Int | S Expr Expr | P Expr Expr  
  deriving (Eq, Ord, Show)
 
subexpresiones :: Expr -> Set Expr
subexpresiones (N x)   = singleton (N x)
subexpresiones (S i d) =
  S i d `insert` (subexpresiones i `union` subexpresiones d)
subexpresiones (P i d) =
  P i d `insert` (subexpresiones i `union` subexpresiones d)

Sumas de subconjuntos

Definir la función

   sumasSubconjuntos :: Set Int -> Set Int

tal que (sumasSubconjuntos xs) es el conjunto de las sumas de cada uno de los subconjuntos de xs. Por ejemplo,

   λ> sumasSubconjuntos (fromList [3,2,5])
   fromList [0,2,3,5,7,8,10]
   λ> length (sumasSubconjuntos (fromList [-40,-39..40]))
   1641

Soluciones

import Data.List
import Data.Set ( Set
                , deleteFindMin
                , fromList
                , singleton
                , toList
                )
import qualified Data.Set as S
 
-- 1ª definición
-- =============
 
sumasSubconjuntos :: Set Int -> Set Int
sumasSubconjuntos xs =
  fromList (map sum (subsequences (toList xs))) 
 
-- 2ª definición
-- =============
 
sumasSubconjuntos2 :: Set Int -> Set Int
sumasSubconjuntos2 =
  fromList . sumasSubconjuntosL . toList  
 
sumasSubconjuntosL :: [Int] -> [Int]
sumasSubconjuntosL []     = [0]
sumasSubconjuntosL (x:xs) = ys `union` map (+x) ys
  where ys = sumasSubconjuntosL xs
 
-- 3ª solución
-- ===========
 
sumasSubconjuntos3 :: Set Int -> Set Int
sumasSubconjuntos3 xs
  | S.null xs = singleton 0
  | otherwise = zs `S.union` (S.map (+y) zs)
  where (y,ys) = deleteFindMin xs
        zs     = sumasSubconjuntos2 ys
 
-- Comparación de eficiencia
-- =========================
 
--    λ> length (sumasSubconjuntos (fromList [1..22]))
--    254
--    (4.17 secs, 4,574,495,128 bytes)
--    λ> length (sumasSubconjuntos2 (fromList [1..22]))
--    254
--    (0.03 secs, 5,583,200 bytes)
--    λ> length (sumasSubconjuntos3 (fromList [1..22]))
--    254
--    (0.03 secs, 5,461,064 bytes)
--
--    λ> length (sumasSubconjuntos2 (fromList [1..60]))
--    1831
--    (2.75 secs, 611,912,128 bytes)
--    λ> length (sumasSubconjuntos3 (fromList [1..60]))
--    1831
--    (2.81 secs, 610,476,992 bytes)

Conjuntos de puntos enteros en regiones rectangulares

Los puntos de una cuadrícula se puede representar mediante pares de números enteros

   type Punto = (Int,Int)

y las regiones rectangulares mediante el siguiente tipo de dato

   data Region = Rectangulo Punto  Punto 
               | Union      Region Region
               | Diferencia Region Region
               deriving (Eq, Show)

donde

  • (Rectangulo p1 p2) es la región formada por un rectángulo cuyo vértice superior izquierdo es p1 y su vértice inferior derecho es p2.
  • (Union r1 r2) es la región cuyos puntos pertenecen a alguna de las regiones r1 y r2.
  • (Diferencia r1 r2) es la región cuyos puntos pertenecen a la región r1 pero no pertenecen a la r2.

Definir la función

   puntos :: Region -> [Punto]

tal que (puntos r) es la lista de puntos de la región r. Por ejemplo, usando las regiones definidas por

   r0021, r3051, r4162 :: Region
   r0021 = Rectangulo (0,0) (2,1)
   r3051 = Rectangulo (3,0) (5,1)
   r4162 = Rectangulo (4,1) (6,2)

se tiene

   ghci> puntos r0021
   [(0,0),(0,1),(1,0),(1,1),(2,0),(2,1)]
   ghci> puntos r3051
   [(3,0),(3,1),(4,0),(4,1),(5,0),(5,1)]
   ghci> puntos r4162
   [(4,1),(4,2),(5,1),(5,2),(6,1),(6,2)]
   ghci> puntos (Union r0021 r3051)
   [(0,0),(0,1),(1,0),(1,1),(2,0),(2,1),(3,0),(3,1),(4,0),(4,1),(5,0),(5,1)]
   ghci> puntos (Diferencia r3051 r4162)
   [(3,0),(3,1),(4,0),(5,0)]
   ghci> puntos (Union (Diferencia r3051 r4162) r4162)
   [(3,0),(3,1),(4,0),(5,0),(4,1),(4,2),(5,1),(5,2),(6,1),(6,2)]

Comprobar con QuickCheck, usando la función enRegion definida en el ejercicio [Puntos en regiones rectangulares](Puntos en regiones rectangulares) que (enRegion p r) es equivalente a (p elem puntos r).

Nota: Escribir las soluciones usando la siguiente plantilla que contiene un generador de regiones

import Test.QuickCheck
import Control.Monad
 
type Punto = (Int,Int)
 
data Region = Rectangulo Punto  Punto
            | Union      Region Region
            | Diferencia Region Region
            deriving (Eq, Show)
 
r0021, r3051, r4162 :: Region
r0021 = Rectangulo (0,0) (2,1)
r3051 = Rectangulo (3,0) (5,1)
r4162 = Rectangulo (4,1) (6,2)
 
puntos :: Region -> [Punto]
puntos = undefined
 
-- La propiedad es
prop_puntos :: Punto -> Region -> Bool
prop_puntos p r = undefined
 
-- La comprobación es
--    ghci> quickCheckWith (stdArgs {maxSize=7}) prop_puntos
--    +++ OK, passed 100 tests.
 
enRegion :: Punto -> Region -> Bool
enRegion (x,y) (Rectangulo (x1,y1) (x2,y2)) =
    x1 <= x && x <= x2 && y1 <= y && y <= y2
enRegion p (Union r1 r2)      = enRegion p r1 || enRegion p r2
enRegion p (Diferencia r1 r2) = enRegion p r1 && not (enRegion p r2)
 
-- Generador de regiones:
instance Arbitrary Region where
    arbitrary = sized arb where
        arb 0         = liftM2 Rectangulo arbitrary arbitrary
        arb n | n > 0 = oneof [liftM2 Rectangulo arbitrary arbitrary,
                               liftM2 Union sub sub, 
                               liftM2 Diferencia sub sub] 
              where sub = arb (n `div` 2)

Soluciones

import Data.List 
import Test.QuickCheck
import Control.Monad
 
type Punto = (Int,Int)
 
data Region = Rectangulo Punto  Punto
            | Union      Region Region
            | Diferencia Region Region
            deriving (Eq, Show)
 
r0021, r3051, r4162 :: Region
r0021 = Rectangulo (0,0) (2,1)
r3051 = Rectangulo (3,0) (5,1)
r4162 = Rectangulo (4,1) (6,2)
 
puntos :: Region -> [Punto]
puntos (Rectangulo (x1,y1) (x2,y2)) = 
    [(x,y) | x <- [x1..x2], y <- [y1..y2]]
puntos (Union r1 r2)      = puntos r1 `union` puntos r2
puntos (Diferencia r1 r2) = puntos r1 \\ puntos r2
 
-- La propiedad es
prop_puntos :: Punto -> Region -> Bool
prop_puntos p r =
    enRegion p r == (p `elem` puntos r)
 
-- La comprobación es
--    ghci> quickCheckWith (stdArgs {maxSize=7}) prop_puntos
--    +++ OK, passed 100 tests.
 
enRegion :: Punto -> Region -> Bool
enRegion (x,y) (Rectangulo (x1,y1) (x2,y2)) =
    x1 <= x && x <= x2 && y1 <= y && y <= y2
enRegion p (Union r1 r2)      = enRegion p r1 || enRegion p r2
enRegion p (Diferencia r1 r2) = enRegion p r1 && not (enRegion p r2)
 
-- Generador de regiones:
instance Arbitrary Region where
    arbitrary = sized arb where
        arb 0         = liftM2 Rectangulo arbitrary arbitrary
        arb n | n > 0 = oneof [liftM2 Rectangulo arbitrary arbitrary,
                               liftM2 Union sub sub, 
                               liftM2 Diferencia sub sub] 
              where sub = arb (n `div` 2)