Números de Pentanacci

Los números de Fibonacci se definen mediante las ecuaciones

Los primeros números de Fibonacci son

Una generalización de los anteriores son los números de Pentanacci definidos por las siguientes ecuaciones

Los primeros números de Pentanacci son

Definir la sucesión

cuyos elementos son los números de Pentanacci. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

Referencias

Número de representaciones de n como suma de dos cuadrados


Sea n un número natural cuya factorización prima es
$$n = 2^{a} \times p(1)^{b(1)} \times \dots \times p(n)^{b(n)} \times q(1)^{c(1)} \times \dots \times q(m)^{c(m)}$$
donde los p(i) son los divisores primos de n congruentes con 3 módulo 4 y los q(j) son los divisores primos de n congruentes con 1 módulo 4. Entonces, el número de forma de descomponer n como suma de dos
cuadrados es 0, si algún b(i) es impar y es el techo (es decir, el número entero más próximo por exceso) de
$$\frac{(1+c(1)) \times \dots \times (1+c(m))}{2}$$
en caso contrario. Por ejemplo, el número
$$2^{3} \times (3^{9} \times 7^{8}) \times (5^{3} \times 13^{6})$$
no se puede descomponer como sumas de dos cuadrados (porque el exponente de 3 es impar) y el número
$$2^{3} \times (3^{2} \times 7^{8}) \times (5^{3} \times 13^{6})$$
tiene 14 descomposiciones como suma de dos cuadrados (porque los exponentes de 3 y 7 son pares y el techo de
$$\frac{(1+3) \times (1+6)}{2}$$
es 14).

Definir la función

tal que (nRepresentaciones n) es el número de formas de representar n como suma de dos cuadrados. Por ejemplo,

Usando la función representaciones del ejercicio anterior, comprobar con QuickCheck la siguiente propiedad

Soluciones

El código se encuentra en GitHub.

Referencias

Representaciones de un número como suma de dos cuadrados

Definir la función

tal que (representaciones n) es la lista de pares de números naturales (x,y) tales que n = x^2 + y^2. Por ejemplo.

Comprobar con QuickCheck que un número natural n se puede como suma de dos cuadrados si, y sólo si, en la factorización prima de n todos los exponentes de sus factores primos congruentes con 3 módulo 4 son pares.

Soluciones

El código se encuentra en GitHub.

Factorizaciones de números de Hilbert

Un número de Hilbert es un entero positivo de la forma 4n+1. Los primeros números de Hilbert son 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, …

Un primo de Hilbert es un número de Hilbert n que no es por ningún número de Hilbert menor que n (salvo el 1). Los primeros primos de Hilbert son 5, 9, 13, 17, 21, 29, 33, 37, 41, 49, 53, 57, 61, 69, 73, 77, 89, 93, 97, 101, 109, 113, 121, 129, 133, 137, …

Definir la función

tal que (factorizacionesH n) es la listas de primos de Hilbert cuyo producto es el número de Hilbert n. Por ejemplo,

Comprobar con QuickCheck que todos los números de Hilbert son factorizables como producto de primos de Hilbert (aunque la factorización, como para el 441, puede no ser única).

Soluciones

El código se encuentra en GitHub.

Referencias

Basado en el artículo Failure of unique factorization (A example of the failure of the fundamental theorem of arithmetic) de R.J. Lipton en el blog Gödel’s Lost Letter and P=NP.

Otras referencias

Números primos de Hilbert

Un número de Hilbert es un positivo de la forma 4n+1. Los primeros números de Hilbert son 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, 73, 77, 81, 85, 89, 93, 97, …

Un primo de Hilbert es un número de Hilbert n que no es por ningún número de Hilbert menor que n (salvo el 1). Los primeros primos de Hilbert son 5, 9, 13, 17, 21, 29, 33, 37, 41, 49, 53, 57, 61, 69, 73, 77, 89, 93, 97, 101, 109, 113, 121, 129, 133, 137, 141, 149, 157, 161, 173, 177, 181, 193, 197, …

Definir la sucesión

tal que sus elementos son los primos de Hilbert. Por ejemplo,

Soluciones

El código se encuentra en GitHub.