Reconocimiento de particiones

Una partición de un conjunto es una división del mismo en subconjuntos disjuntos no vacíos.

Definir la función

tal que (esParticion xss) se verifica si xss es una partición; es decir sus elementos son listas no vacías disjuntas. Por ejemplo.

Soluciones

Pensamiento

Sentía los cuatro vientos,
en la encrucijada
de su pensamiento.

Antonio Machado

Número de parejas

Definir la función

tal que (nParejas xs) es el número de parejas de elementos iguales en xs. Por ejemplo,

En el primer ejemplos las parejas son (1,1), (1,1) y (2,2). En el segundo ejemplo, las parejas son (1,1) y (2,2).

Comprobar con QuickCheck que para toda lista de enteros xs, el número de parejas de xs es igual que el número de parejas de la inversa de xs.

Soluciones

Pensamiento

Toda la imaginería
que no ha brotado del río,
barata bisutería.

Antonio Machado

Último dígito no nulo del factorial

El factorial de 7 es

por tanto, el último dígito no nulo del factorial de 7 es 4.

Definir la función

tal que (ultimoNoNuloFactorial n) es el último dígito no nulo del factorial de n. Por ejemplo,

Comprobar con QuickCheck que si n es mayor que 4, entonces el último dígito no nulo del factorial de n es par.

Soluciones

Pensamiento

Incierto es, lo porvenir. ¿Quién sabe lo que va a pasar? Pero incierto es también lo pretérito. ¿Quién sabe lo que ha pasado? De suerte que ni el porvenir está escrito en ninguna parte, ni el pasado tampoco.

Antonio Machado

Distancia de Hamming

La distancia de Hamming entre dos listas es el número de posiciones en que los correspondientes elementos son distintos. Por ejemplo, la distancia de Hamming entre «roma» y «loba» es 2 (porque hay 2 posiciones en las que los elementos correspondientes son distintos: la 1ª y la 3ª).

Definir la función

tal que (distancia xs ys) es la distancia de Hamming entre xs e ys. Por ejemplo,

Comprobar con QuickCheck si la distancia de Hamming tiene la siguiente propiedad

y, en el caso de que no se verifique, modificar ligeramente la propiedad para obtener una condición necesaria y suficiente de distancia(xs,ys) = 0.

Soluciones

Pensamiento

En mi soledad/
he visto cosas muy claras,
que no son verdad.

Antonio Machado

Listas equidigitales

Una lista de números naturales es equidigital si todos sus elementos tienen el mismo número de dígitos.

Definir la función

tal que (equidigital xs) se verifica si xs es una lista equidigital. Por ejemplo,

Soluciones

Pensamiento

Se miente más de la cuenta
por falta de fantasía:
también la verdad se inventa.

Antonio Machado

Número medio

Un número medio es número natural que es igual a la media aritmética de las permutaciones de sus dígitos. Por ejemplo, 370 es un número medio ya que las permutaciones de sus dígitos es 073, 037, 307, 370, 703 y 730 cuya media es 2220/6 que es igual a 370.

Definir las siguientes funciones

tales que

  • (numeroMedio n) se verifica si n es un número medio. Por ejemplo,

  • densidades es la lista cuyo elemento n-ésimo (empezando a contar en 1) es la densidad de números medios en el intervalo [1,n]; es decir, la cantidad de números medios menores o iguales que n dividida por n. Por ejemplo,

  • (graficaDensidadNumeroMedio n) dibuja la gráfica de las densidades de
    los intervalos [1,k] para k desde 1 hasta n. Por ejemplo, (graficaDensidadNumeroMedio 100) dibuja

    y (graficaDensidadNumeroMedio 1000) dibuja

Soluciones

Puedes escribir tus soluciones en los comentarios o ver las soluciones propuestas pulsando [expand title=»aquí»]

[/expand]

Tren de potencias

Si n es el número natural cuya expansión decimal es abc… , el tren de potencias de n es a^bc^d… donde el último exponente es 1, si n tiene un número impar de dígitos. Por ejemplo

Definir las funciones

tales que

  • (trenDePotencias n) es el tren de potencia de n. Por ejemplo.

  • (esPuntoFijoTrenDePotencias n) se verifica si n es un punto fijo de trenDePotencias; es decir, (trenDePotencias n) es igual a n. Por ejemplo,

  • puntosFijosTrenDePotencias es la lista de los puntso fijos de trenDePotencias. Por ejemplo,

  • (tablaTrenDePotencias a b) es la tabla de los trenes de potencias de los números entre a y b. Por ejemplo,

Comprobar con QuickCheck que entre 2593 y 24547284284866559999999999 la función trenDePotencias no tiene puntos fijos.

Soluciones

Puedes escribir tus soluciones en los comentarios o ver las soluciones propuestas pulsando [expand title=»aquí»]

[/expand]

Sucesión fractal

La sucesión fractal

está construida de la siguiente forma:

  • los términos pares forman la sucesión de los números naturales

  • los términos impares forman la misma sucesión original

Definir las funciones

tales que

  • sucFractal es la lista de los términos de la sucesión fractal. Por ejemplo,

  • (sumaSucFractal n) es la suma de los n primeros términos de la sucesión fractal. Por ejemplo,

Soluciones

[schedule expon=’2018-06-19′ expat=»06:00″]

  • Las soluciones se pueden escribir en los comentarios hasta el 17 de mayo.
  • El código se debe escribir entre una línea con <pre lang=»haskell»> y otra con </pre>

[/schedule]

[schedule on=’2018-06-19′ at=»06:00″]

Referencia

+ [Fractal sequences and restricted Nim](http://bit.ly/1WX1IjB) por Lionel Levine.
[/schedule]

Puntos alcanzables en un mapa

Un mapa con dos tipos de regiones (por ejemplo, tierra y mar) se puede representar mediante una matriz de ceros y unos.

Para los ejemplos usaremos los mapas definidos por

Definir las funciones

tales que

  • (alcanzables p) es la lista de los puntos de mapa m que se pueden alcanzar a partir del punto p moviéndose en la misma región que p (es decir, a través de ceros si el elemento de m en p es un cero o a través de unos, en caso contrario) y los movimientos permitidos son ir hacia el norte, sur este u oeste (pero no en diagonal). Por ejemplo,

  • (esAlcanzable m p1 p2) se verifica si el punto p1 es alcanzable desde el p1 en el mapa m. Por ejemplo,

Nota: Este ejercicio está basado en el problema 10 kinds of people de Kattis.

Soluciones

Sin ceros consecutivos

Definir la función

tal que (sinDobleCero n) es la lista de las listas de longitud n formadas por el 0 y el 1 tales que no contiene dos ceros consecutivos. Por ejemplo,

Soluciones

[schedule expon=’2018-06-13′ expat=»06:00″]

  • Las soluciones se pueden escribir en los comentarios hasta el 06 de junio.
  • El código se debe escribir entre una línea con <pre lang=»haskell»> y otra con </pre>

[/schedule]

[schedule on=’2018-06-13′ at=»06:00″]

[/schedule]

Valores de polinomios y de expresiones

Las expresiones aritméticas construidas con una variables, los números enteros y las operaciones de sumar y multiplicar se pueden representar mediante el tipo de datos Exp definido por

Por ejemplo, la expresión 3+5x^2 se puede representar por

Por su parte, los polinomios se pueden representar por la lista de sus
coeficientes. Por ejemplo, el polinomio 3+5x^2 se puede representar por [3,0,5].

Definir las funciones

tales que

  • (valorE e n) es el valor de la expresión e cuando se sustituye su variable por n. Por ejemplo,

  • (expresion p) es una expresión aritmética equivalente al polinomio p. Por ejemplo,

  • (valorP p n) es el valor del polinomio p cuando se sustituye su variable por n. Por ejemplo,

Comprobar con QuickCheck que, para todo polinomio p y todo entero n,

Soluciones

Ancestro común más bajo

El tipo de los árboles binarios se define por

Por ejemplo, el árbol

se define por

Un árbol ordenado es un árbol binario tal que para cada nodo, los elementos de su subárbol izquierdo son menores y los de su subárbol derecho son mayores. El árbol anterior es un árbol ordenado.

Los ancestros de un nodo x son los nodos y tales que x está en alguna de las ramas de x. Por ejemplo, en el árbol anterior los ancestros de 9 son 5 y 7.

El ancestro común más bajo de dos elementos x e y de un árbol a es el ancestro de x e y de menor profundidad. Por ejemplo, en el árbol anterior el ancestro común más bajo de 6 y 9 es 7.

Definir la función

tal que (ancestroComunMasBajo a x y) es el ancestro de menor profundidad de los nodos x e y en el árbol ordenado a, donde x e y son dos elementos distintos del árbol a. Por ejemplo,

Soluciones

Subexpresiones aritméticas

Las expresiones aritméticas pueden representarse usando el siguiente tipo de datos

Por ejemplo, la expresión 2*(3+7) se representa por

Definir la función

tal que (subexpresiones e) es el conjunto de las subexpresiones de e. Por ejemplo,

Soluciones

La regla de los signos de Descartes

Los polinomios pueden representarse mediante listas. Por ejemplo, el polinomio x^5+3x^4-5x^2+x-7 se representa por [1,3,0,-5,1,-7]. En dicha lista, obviando el cero, se producen tres cambios de signo: del 3 al -5, del -5 al 1 y del 1 al -7. Llamando C(p) al número de cambios de signo en la lista de coeficientes del polinomio p(x), tendríamos entonces que en este caso C(p)=3.

La regla de los signos de Descartes dice que el número de raíces reales positivas de una ecuación polinómica con coeficientes reales igualada a cero es, como mucho, igual al número de cambios de signo que se produzcan entre sus coeficientes (obviando los ceros). Por ejemplo, en el caso anterior la ecuación tendría como mucho tres soluciones reales positivas, ya que C(p)=3.

Además, si la cota C(p) no se alcanza, entonces el número de raíces positivas de la ecuación difiere de ella un múltiplo de dos. En el ejemplo anterior esto significa que la ecuación puede tener tres raíces positivas o tener solamente una, pero no podría ocurrir que tuviera dos o que no tuviera ninguna.

Definir las funciones

tales que

  • (cambios xs) es la lista de los pares de elementos de xs con signos distintos, obviando los ceros. Por ejemplo,

  • (nRaicesPositivas p) es la lista de los posibles números de raíces positivas del polinomio p (representado mediante una lista) según la regla de los signos de Descartes. Por ejemplo,

que significa que la ecuación x^5+3x^4-5x^2+x-7=0 puede tener 3 ó 1 raíz positiva.

Soluciones

Números taxicab

Los números taxicab, taxi-cab o números de Hardy-Ramanujan son aquellos números naturales que pueden expresarse como suma de dos cubos de más de una forma.

Alternativamente, se define al n-ésimo número taxicab como el menor número que es suma de dos cubos de n formas.

Definir las siguientes sucesiones

tales que taxicab es la sucesión de estos números según la primera definición y taxicab2 según la segunda. Por ejemplo,

Nota 1. La sucesiones taxicab y taxicab2 se corresponden con las sucesiones A001235 y A011541 de la OEIS.

Nota 2: Este ejercicio ha sido propuesto por Ángel Ruiz Campos.

Soluciones

Caminos reducidos

Un camino es una sucesión de pasos en una de las cuatros direcciones Norte, Sur, Este, Oeste. Ir en una dirección y a continuación en la opuesta es un esfuerzo que se puede reducir, Por ejemplo, el camino [Norte,Sur,Este,Sur] se puede reducir a [Este,Sur].

Un camino se dice que es reducido si no tiene dos pasos consecutivos en direcciones opuesta. Por ejemplo, [Este,Sur] es reducido y [Norte,Sur,Este,Sur] no lo es.

En Haskell, las direcciones y los caminos se pueden definir por

Definir la función

tal que (reducido ds) es el camino reducido equivalente al camino ds. Por ejemplo,

Nótese que en el penúltimo ejemplo las reducciones son

Soluciones

Problema de las 3 jarras

En el problema de las tres jarras (A,B,C) se dispone de tres jarras de capacidades A, B y C litros con A > B > C y A par. Inicialmente la jarra mayor está llena y las otras dos vacías. Queremos, trasvasando adecuadamente el líquido entre las jarras, repartir por igual el contenido inicial entre las dos jarras mayores. Por ejemplo, para el problema (8,5,3) el contenido inicial es (8,0,0) y el final es (4,4,0).

Definir las funciones

tales que

  • (solucionesTresJarras p) es la lista de soluciones del problema de las tres jarras p. Por ejemplo,

  • (tresJarras p) es una solución del problema de las tres jarras p con el mínimo mínimo número de trasvase, si p tiene solución y Nothing, en caso contrario. Por ejemplo,

Soluciones

Caminos en un grafo

Definir las funciones

tales que

  • (grafo as) es el grafo no dirigido definido cuyas aristas son as. Por ejemplo,

  • (caminos g a b) es la lista los caminos en el grafo g desde a hasta b sin pasar dos veces por el mismo nodo. Por ejemplo,

Soluciones

Sustitución de pares de elementos consecutivos iguales

Dada una lista xs se reemplaza el primer par de elementos consecutivos iguales x por x+1 y se repite el proceso con las listas obtenidas hasta que no haya ningún par de elementos consecutivos iguales. Por ejemplo, para [5,2,1,1,2,2] se tiene el siguiente proceso

Definir la función

tal que (sustitucion xs) es la lista obtenida aplicándole a xs el proceso anterior. Por ejemplo,

Soluciones

Grafo de divisibilidad

El grafo de divisibilidad de orden n es el grafo cuyos nodos son los números naturales entre 1 y n, cuyas aristas son los pares (x,y) tales que x divide a y o y divide a x. El coste de cada arista es el cociente entre su mayor y menor elemento.

Definir las siguientes funciones:

tales que

  • (grafoDivisibilidad n) es el grafo de divisibilidad de orden n. Por ejemplo,

  • (coste n) es el coste del árbol de expansión mínimo del grafo de divisibilidad de orden n. Por ejemplo,

Soluciones

Sucesión de Recamán

La sucesión de Recamán está definida como sigue:

Definir las funciones

tales que

  • sucRecaman es la lista de los términos de la sucesión de Recamám. Por ejemplo,

  • (invRecaman n) es la primera posición de n en la sucesión de Recamán. Por ejemplo,

  • (graficaSucRecaman n) dibuja los n primeros términos de la sucesión de Recamán. Por ejemplo, (graficaSucRecaman 300) dibuja
    Sucesion_de_Recaman_1
  • (graficaInvRecaman n) dibuja los valores de (invRecaman k) para k entre 0 y n. Por ejemplo, (graficaInvRecaman 17) dibuja
    Sucesion_de_Recaman_2
    y (graficaInvRecaman 100) dibuja
    Sucesion_de_Recaman_3

Soluciones

Mayor número de atracciones visitables

En el siguiente gráfico se representa en una cuadrícula el plano de Manhattan. Cada línea es una opción a seguir; el número representa las atracciones que se pueden visitar si se elige esa opción.

El turista entra por el extremo superior izquierda y sale por el extremo inferior derecha. Sólo puede moverse en las direcciones Sur y Este (es decir, hacia abajo o hacia la derecha).

Representamos el mapa mediante una matriz p tal que p(i,j) = (a,b), donde a = nº de atracciones si se va hacia el sur y b = nº de atracciones si se va al este. Además, ponemos un 0 en el valor del número de atracciones por un camino que no se puede elegir. De esta forma, el mapa anterior se representa por la matriz siguiente:

En este caso, si se hace el recorrido

el número de atracciones es

cuya suma es 34.

Definir la función

tal que (mayorNumeroV p) es el máximo número de atracciones que se pueden visitar en el plano representado por la matriz p. Por ejemplo, si se define la matriz anterior por

entonces

Para los siguientes ejemplos se define un generador de mapas

Entonces,

Soluciones

Número de triangulaciones de un polígono

Una triangulación de un polígono es una división del área en un conjunto de triángulos, de forma que la unión de todos ellos es igual al polígono original, y cualquier par de triángulos es disjunto o comparte únicamente un vértice o un lado. En el caso de polígonos convexos, la cantidad de triangulaciones posibles depende únicamente del número de vértices del polígono.

Si llamamos T(n) al número de triangulaciones de un polígono de n vértices, se verifica la siguiente relación de recurrencia:

Definir la función

tal que (numeroTriangulaciones n) es el número de triangulaciones de un polígono convexo de n vértices. Por ejemplo,

Soluciones

Sucesiones suaves

Una sucesión es suave si valor absoluto de la diferencia de sus términos consecutivos es 1.

Definir la función

tal que (suaves n) es la lista de las sucesiones suaves de longitud n cuyo último término es 0. Por ejemplo,

Soluciones

Máximos de expresiones aritméticas

Las expresiones aritméticas se pueden definir usando el siguiente tipo de datos

Por ejemplo, la expresión

se puede definir por

Definir la función

tal que (maximo e xs) es el par formado por el máximo valor de la expresión e para los puntos de xs y en qué puntos alcanza el máximo. Por ejemplo,

Soluciones

Polinomio digital

Definir la función

tal que (polinomioDigital n) es el polinomio cuyos coeficientes son los dígitos de n. Por ejemplo,

Nota: Este ejercicio debe realizarse usando únicamente las funciones de la librería I1M.Pol que se encuentra aquí y se describe aquí.

Soluciones

Las sucesiones de Loomis

La sucesión de Loomis generada por un número entero positivo x es la sucesión cuyos términos se definen por

  • f(0) es x
  • f(n) es la suma de f(n-1) y el producto de los dígitos no nulos de f(n-1)

Los primeros términos de las primeras sucesiones de Loomis son

  • Generada por 1: 1, 2, 4, 8, 16, 22, 26, 38, 62, 74, 102, 104, 108, 116, 122, …
  • Generada por 2: 2, 4, 8, 16, 22, 26, 38, 62, 74, 102, 104, 108, 116, 122, 126, …
  • Generada por 3: 3, 6, 12, 14, 18, 26, 38, 62, 74, 102, 104, 108, 116, 122, 126, …
  • Generada por 4: 4, 8, 16, 22, 26, 38, 62, 74, 102, 104, 108, 116, 122, 126, 138, …
  • Generada por 5: 5, 10, 11, 12, 14, 18, 26, 38, 62, 74, 102, 104, 108, 116, 122, …

Se observa que a partir de un término todas coinciden con la generada por 1. Dicho término se llama el punto de convergencia. Por ejemplo,

  • la generada por 2 converge a 2
  • la generada por 3 converge a 26
  • la generada por 4 converge a 4
  • la generada por 5 converge a 26

Definir las siguientes funciones

tales que

  • (sucLoomis x) es la sucesión de Loomis generada por x. Por ejemplo,

  • (convergencia x) es el término de convergencia de la sucesioń de Loomis generada por x xon la geerada por 1. Por ejemplo,

  • (graficaConvergencia xs) dibuja la gráfica de los términos de convergencia de las sucesiones de Loomis generadas por los elementos de xs. Por ejemplo, (graficaConvergencia ([1..50]) dibuja
    Las_sucesiones_de_Loomis_1
    y graficaConvergencia ([1..148] \ [63,81,89,137]) dibuja
    Las_sucesiones_de_Loomis_2

Soluciones

Subconjuntos con suma dada

Sea S un conjunto finito de números enteros positivos y n un número natural. El problema consiste en calcular los subconjuntos de S cuya suma es n.

Definir la función

tal que (subconjuntosSuma xs n) es la lista de los subconjuntos de xs cuya suma es n. Por ejemplo,

Soluciones

Sumas de subconjuntos

Definir la función

tal que (sumasSubconjuntos xs) es el conjunto de las sumas de cada uno de los subconjuntos de xs. Por ejemplo,

Soluciones

Subsucesiones crecientes de elementos consecutivos

Definir la función

tal que (subsucesiones xs) es la lista de las subsucesiones crecientes de elementos consecutivos de xs. Por ejemplo,

Soluciones