Punto de inflexión

Definir la función

tal que (inflexion xs) es el primer elemento de la lista en donde se cambia de creciente a decreciente o de decreciente a creciente y Nothing si no se cambia. Por ejemplo,

Soluciones

Cadenas de sumas de factoriales de los dígitos

Dado un número n se considera la sucesión cuyo primer término es n y los restantes se obtienen sumando los factoriales de los dígitos del anterior. Por ejemplo, la sucesión que empieza en 69 es

La cadena correspondiente a un número n son los términos de la sucesión que empieza en n hasta la primera repetición de un elemento en la sucesión. Por ejemplo, la cadena de 69 es

Consta de una parte no periódica ([69,363600]) y de una periódica ([1454,169,363601]).

Definir las funciones

tales que

  • (cadena n es la cadena correspondiente al número n. Por ejemplo,

  • (periodo n) es la parte periódica de la cadena de n. Por ejemplo,

Soluciones

Problema de las 3 jarras

En el problema de las tres jarras (A,B,C) se dispone de tres jarras de capacidades A, B y C litros con A > B > C y A par. Inicialmente la jarra mayor está llena y las otras dos vacías. Queremos, trasvasando adecuadamente el líquido entre las jarras, repartir por igual el contenido inicial entre las dos jarras mayores. Por ejemplo, para el problema (8,5,3) el contenido inicial es (8,0,0) y el final es (4,4,0).

Definir las funciones

tales que

  • (solucionesTresJarras p) es la lista de soluciones del problema de las tres jarras p. Por ejemplo,

  • (tresJarras p) es una solución del problema de las tres jarras p con el mínimo mínimo número de trasvase, si p tiene solución y Nothing, en caso contrario. Por ejemplo,

Soluciones

Suma de árboles por niveles

Los árboles binarios con valores enteros se pueden representar con el de tipo de dato algebraico

Por ejemplo, los árboles

se representan por

Definir la función

tal que (suma a) es la suma de todos los nodos a una distancia par de la raíz del árbol a menos la suma de todos los nodos a una distancia impar de la raíz. Por ejemplo,

ya que

Soluciones

Normalización de expresiones aritméticas

El siguiente tipo de dato representa expresiones construidas con variables, sumas y productos

Por ejemplo, x*(y+z) se representa por (P (V "x") (S (V "y") (V "z")))

Una expresión es un término si es un producto de variables. Por ejemplo, x*(y*z) es un término pero x+(y*z) ni x*(y+z) lo son.

Una expresión está en forma normal si es una suma de términos. Por ejemplo, x*(y*z) y x+(y*z) están en forma normal; pero x*(y+z) y (x+y)*(x+z) no lo están.

Definir la función

tales que

  • (esTermino a) se verifica si a es un término. Por ejemplo,

  • (esNormal a) se verifica si a está en forma normal. Por ejemplo,

  • (normal e) es la forma normal de la expresión e obtenida aplicando, mientras que sea posible, las propiedades distributivas:

Por ejemplo,

Comprobar con QuickCheck que para cualquier expresión e, (normal e) está en forma normal y que (normal (normal e)) es igual a (normal e).

Nota. Para la comprobación se usará el siguiente generador de expresiones aritméticas

Soluciones

Sucesión de Recamán

La sucesión de Recamán está definida como sigue:

Definir las funciones

tales que

  • sucRecaman es la lista de los términos de la sucesión de Recamám. Por ejemplo,

  • (invRecaman n) es la primera posición de n en la sucesión de Recamán. Por ejemplo,

  • (graficaSucRecaman n) dibuja los n primeros términos de la sucesión de Recamán. Por ejemplo, (graficaSucRecaman 300) dibuja
    Sucesion_de_Recaman_1
  • (graficaInvRecaman n) dibuja los valores de (invRecaman k) para k entre 0 y n. Por ejemplo, (graficaInvRecaman 17) dibuja
    Sucesion_de_Recaman_2
    y (graficaInvRecaman 100) dibuja
    Sucesion_de_Recaman_3

Soluciones

Elementos con su doble en el conjunto

Definir la función

tal que (conDoble xs) es la lista de los elementos del conjunto xs (representado como una lista sin elementos repetidos) cuyo doble pertenece a xs. Por ejemplo,

Referencia: Basado en el problema Doubles de POJ (Peking University Online Judge System).

Soluciones

Clases de equivalencia

Definir la función

tal que (clasesEquivalencia xs r) es el conjunto de las clases de equivalencia de xs respecto de la relación de equivalencia r. Por ejemplo,

Soluciones

Agrupamiento según valores

Definir la función

tal que (agrupa f xs) es el diccionario obtenido agrupando los elementos de xs según sus valores mediante la función f. Por ejemplo,

Soluciones

Sumas con sumandos distintos o con sumandos impares

El número 6 se puede descomponer de 4 formas distintas como suma con sumandos distintos:

y también se puede descomponer de 4 formas distintas como suma con sumandos impares:

Definir las siguientes funciones

tales que

  • (sumasSumandosDistintos n) es la lista de las descomposiciones de n como sumas con sumandos distintos. Por ejemplo,

  • (nSumasSumandosDistintos n) es el número de descomposiciones de n como sumas con sumandos distintos. Por ejemplo,

  • (sumasSumandosImpares n) es la lista de las descomposiones de n como sumas con sumandos impares. Por ejemplo,

  • (nSumasSumandosImpares n) es el número de descomposiciones de n como sumas con sumandos impares. Por ejemplo,

  • (igualdadDeSumas n) se verifica si, para todo k entre 1 y n, las funciones nSumasSumandosDistintos y nSumasSumandosImpares son iguales. Por ejemplo,

Soluciones

El problema del reciclado

El problema del reciclado N P consiste en lo siguiente: un grupo de personas disponen de N botellas de refresco vacía y las llevan a reciclar obteniendo una botella llena por cada P vacías; se beben inmediatamente el contenido de las botellas obtenidas y sus botellas vacías, junto con las no recicladas anteriormente, las canjean por botellas llenas. El proceso continúa hasta que no tienen suficientes botellas para canjear. El objetivo del problema es calcular el número de botellas que se han bebido.

Por ejemplo, si disponen de 10 botellas y por cada 2 obtienen 1, se producen cuatro canjeos:

  • en el primer canjeo entregan las 10 y obtienen 5;
  • en el segundo, entregan 4, le quedan 1 y obtienen 2;
  • en el tercero, entregan 2, le queda 1 y obtienen 1;
  • en el cuarto, entregan 2 y obtienen 1.

Por tanto, se han bebido 9 y le quedan 1 que no pueden canjear.

Definir la función

tal que (reciclado n p) es el número de botellas que se beben en el reciclado comenzado con n botellas y canjeando p botellas vacías por una llena. Por ejemplo,

Referencia: Este ejercicio está basado en el problema Soda surpler de Kattis.

Soluciones

Orden simétrico

Dada una lista de cadenas ordenadas por longitud, se puede ordenar de manera simétrica colocando la primera cadena en primer lugar, la segunda en el último, la tercera en el segundo, la cuarta en el penúltimo y así sucesivamente.

Por ejemplo, dada la lista

su ordenación simétrica es

Definir la función

tal que (simetrica xs) es la ordenación simétrica de la lista de cadenas (ordenada por longitud) xs. Por ejemplo,

Nota: Este ejercicio está basado en el problema Symmetric order de Kattis.

Soluciones

Puntos alcanzables en un mapa

Un mapa con dos tipos de regiones (por ejemplo, tierra y mar) se puede representar mediante una matriz de ceros y unos.

Para los ejemplos usaremos los mapas definidos por

Definir las funciones

tales que

  • (alcanzables p) es la lista de los puntos de mapa m que se pueden alcanzar a partir del punto p moviéndose en la misma región que p (es decir, a través de ceros si el elemento de m en p es un cero o a través de unos, en caso contrario) y los movimientos permitidos son ir hacia el norte, sur este u oeste (pero no en diagonal). Por ejemplo,

  • (esAlcanzable m p1 p2) se verifica si el punto p1 es alcanzable desde el p1 en el mapa m. Por ejemplo,

Nota: Este ejercicio está basado en el problema 10 kinds of people de Kattis.

Soluciones

Representación de conjuntos mediante intervalos

Un conjunto de números enteros se pueden representar mediante una lista ordenada de intervalos tales que la diferencia entre el menor elemento de un intervalo y el mayor elemento de su intervalo anterior es mayor que uno.

Por ejemplo, el conjunto {2, 7, 4, 3, 9, 6} se puede representar mediante la lista de intervalos [(2,4),(6,7),(9,9)] de forma que en el primer intervalo se agrupan los números 2, 3 y 4; en el segundo, los números 6 y 7 y el tercero, el número 9.

Definir la función

tal que (intervalos xs) es lista ordenada de intervalos que representa al conjunto xs. Por ejemplo,

Nota: Este ejercicio está basado en el problema Bus numbers de Kattis

Soluciones

Reducción de repeticiones consecutivas

Definir la función

tal que (reducida xs) es la lista obtenida a partir de xs de forma que si hay dos o más elementos idénticos consecutivos, borra las repeticiones y deja sólo el primer elemento. Por ejemplo,

Nota: Basado en el ejercicio Apaxiaaaaaaaaaaaans! de Kattis.

Soluciones

Por 3 o más 5

El enunciado del problema Por 3 o más 5 de ¡Acepta el reto! es el siguiente

Cuenta la leyenda que un famoso matemático, tras aprender a sumar y multiplicar a la tierna edad de 3 años en apenas 5 días, se dio cuenta de que, empezando por 1, podía generar un montón de números sin más que multiplicar por 3 o sumar 5 a alguno de los que ya hubiera generado antes.

Por ejemplo, el 23 (edad a la que se casaría) lo obtuvo así: ((1 + 5) × 3) + 5
Por su parte el 77 (edad a la que tendría su primer bisnieto) lo consiguió: (((1 × 3 + 5) × 3) × 3) + 5

Por mucho que lo intentó, algunos números, sin embargo, resultaron ser imposibles de obtener, como por ejemplo el 5, el 7 o el 15.

Se dice que un número es generable si se puede escribir como una sucesión (quizá vacía) de multiplicaciones por 3 y sumas de 5 al número 1.

Definir las siguientes funciones

tales que

  • generables es la sucesión de los números generables. Por ejemplo,

  • (generable x) se verifica si x es generable. Por ejemplo,

  • (arbolGenerable x) es el árbol de los números generables menores o iguales a x. Por ejemplo,

Soluciones

Números cubifinitos

El enunciado del problema Números cubifinitos de ¡Acepta el reto! es el siguiente

Se dice que un número es cubifinito cuando al elevar todos sus dígitos al cubo y sumarlos el resultado o bien es 1 o bien es un número cubifinito.

Por ejemplo, el número 1243 es cubifinito, pues al elevar todos sus dígitos al cubo obtenemos 100 que es cubifinito.

Por su parte, el 513 no es cubifinito, pues al elevar al cubo sus dígitos conseguimos el 153 que nunca podrá ser cubifinito, pues la suma de los cubos de sus dígitos vuelve a dar 153.

Definir las funciones

tales que

  • (esCubifinito n) se verifica si n es un número cubifinito. Por ejemplo,

  • (grafica n) dibuja la gráfica de la sucesión de los primeros n números cubifinitos. Por ejemplo, al evaluar (grafica 50) se dibuja
    Numeros_cubifinitos

Soluciones

Caminos minimales en un arbol numérico

En la librería Data.Tree se definen los árboles y los bosques como sigue

Se pueden definir árboles. Por ejemplo,

Y se pueden dibujar con la función drawTree. Por ejemplo,

Los mayores divisores de un número x son los divisores u tales que u > 1 y existe un v tal que 1 < v < u y u*v = x. Por ejemplo, los mayores divisores de 24 son 12, 8 y 6.

El árbol de los predecesores y mayores divisores de un número x es el árbol cuya raíz es x y los sucesores de cada nodo y > 1 es el conjunto formado por y-1 junto con los mayores divisores de y. Los nodos con valor 1 no tienen sucesores. Por ejemplo, el árbol de los predecesores y mayores divisores del número 6 es

Definir las siguientes funciones

tales que

  • (mayoresDivisores x) es la lista de los mayores divisores de x. Por ejemplo,

  • (arbol x) es el árbol de los predecesores y mayores divisores del número x. Por ejemplo,

  • (caminos x) es la lista de los caminos en el árbol de los predecesores y mayores divisores del número x. Por ejemplo,

  • (caminosMinimales x) es la lista de los caminos en de menor longitud en el árbol de los predecesores y mayores divisores del número x. Por ejemplo,

Soluciones

Generadores de números de Gabonacci

Los números de Gabonacci generados por (a,b) son los elementos de la sucesión de Gabonacci definida por

Por ejemplo, la sucesión de Gabonacci generada por (2,5) es 2, 5, 7, 12, 19, 31, 50, 81, 131, 212, …

Un número pertenece a distintas sucesiones de Gabonacci. Por ejemplo, el 9 pertenece a las sucesiones de Gabonacci generados por (3,3), (1,4) y (4,5).

El menor generador de Gabonacci de un número x es el par (a,b), con 1 ≤ a ≤ b, tal que (a,b) es un generador de Gabonacci de x y no existe ningún generador de Gabonacci de x (a’,b’) tal que b’ < b ó b’ = b y a’ < a. Por ejemplo, el menor generador de Gabonacci de 9 es (3,3).

Definir la función

tal que (menorGenerador x) es el menor generador de Gabonacci de x. Por ejemplo,

Soluciones

Números binarios invertidos

La representación binaria de 13 es 1101, que al invertirlo da 1011 cuya representación decimal es el número 11.

Definir la función

tal que (transformado x) es la representación decimal del número obtenido invirtiendo la representación binaria de x. Por ejemplo,

Nota: El ejercicio está basado en el problema Reversed Binary Numbers de Kattis.

Soluciones

Números construibles como sumas de dos dados

Un número x es construible a partir de de los números enteros positivos a y b si se puede escribir como una suma cuyos sumandos son a o b. Por ejemplo, 7 y 9 son construibles a partir de 2 y 3 ya que 7 = 2+2+3 y 9 = 3+3+3.

Definir las funciones

tales que

  • (construibles a b) es la lista de los números construibles a partir de a y b. Por ejemplo,

  • (esConstruible a b x) se verifica si x es construible a partir de a y b. Por ejemplo,

Soluciones

Sucesiones alícuotas

La sucesión alícuota de un número x es la sucesión cuyo primer término es x y cada otro término es la suma de los divisores propios del término anterior. Por ejemplo, la sucesión alícuota de 10 es [10,8,7,1,0,0,0] ya que

Definir la función

tal que (sucAlicuota x) es la sucesión alícuota de x. Por ejemplo,

Soluciones

Precisión de aproximaciones de pi

La precisión de una aproximación x de pi es el número de dígitos comunes entre el inicio de x y de pi. Por ejemplo, puesto que 355/113 es 3.1415929203539825 y pi es 3.141592653589793, la precisión de 355/113 es 7.

Definir las siguientes funciones

tales que

  • (mayorPrefijoComun xs ys) es el mayor prefijo común de xs e ys. Por ejemplo,

  • (precisionPi x) es la precisión de la aproximación de pi x. Por ejemplo,

  • (precisionPiCR x) es la precisión de la aproximación de pi x, como números reales. Por ejemplo,

Nota: Para la definición precisionPiCR se usa la librería Data.Number.CReal que se instala con

Soluciones

Cálculo de pi mediante el método de Newton

El método de Newton para el cálculo de pi se basa en la relación
Calculo_de_pi_mediante_el_metodo_de_Newton_1
y en el desarrollo del arco seno
Calculo_de_pi_mediante_el_metodo_de_Newton_2
de donde se obtiene la fórmula
Calculo_de_pi_mediante_el_metodo_de_Newton_3

La primeras aproximaciones son

Definir las funciones

tales que

  • (aproximacionPi n) es la n-ésima aproximación de pi con la fórmula de Newton. Por ejemplo,

  • (grafica xs) dibuja la gráfica de las k-ésimas aproximaciones de pi donde k toma los valores de la lista xs. Por ejemplo, (grafica [1..30]) dibuja
    Calculo_de_pi_mediante_el_metodo_de_Newton_4

Nota: Este ejercicio ha sido propuesto por Manuel Herrera.

Soluciones

Cálculo de pi mediante los métodos de Gregory-Leibniz y de Beeler

La fórmula de Gregory-Leibniz para calcular pi es
Calculo_de_pi_mediante_los_metodos_de_Gregory-Leibniz_y_de_Beeler_1
y la de Beeler es
Calculo_de_pi_mediante_los_metodos_de_Gregory-Leibniz_y_de_Beeler_2

Definir las funciones

tales que

  • (aproximaPiGL n) es la aproximación de pi con los primeros n términos de la fórmula de Gregory-Leibniz. Por ejemplo,

  • (aproximaPiBeeler n) es la aproximación de pi con los primeros n términos de la fórmula de Beeler. Por ejemplo,

  • (graficas xs) dibuja la gráfica de las k-ésimas aproximaciones de pi, donde k toma los valores de la lista xs, con las fórmulas de Gregory-Leibniz y de Beeler. Por ejemplo, (graficas [1..25]) dibuja
    Calculo_de_pi_mediante_los_metodos_de_Gregory-Leibniz_y_de_Beeler_3
    donde la línea morada corresponde a la aproximación de Gregory-Leibniz y la verde a la de Beeler.

Nota: Este ejercicio ha sido propuesto por Enrique Naranjo.

Soluciones

Búsqueda en los dígitos de pi

El fichero Digitos_de_pi.txt contiene el número pi con un millón de decimales; es decir,

Definir la función

tal que (posicion n) es (Just k) si k es la posición de n en la sucesión formada por un millón dígitos decimales del número pi y Nothing si n no ocurre en dicha sucesión. Por ejemplo,

Nota. Se puede comprobar la función mediante The pi-search page o Pi search engine.

Soluciones

Cálculo de pi usando la fórmula de Vieta

La fórmula de Vieta para el cálculo de pi es la siguiente
Calculo_de_pi_usando_la_formula_de_Vieta

Definir las funciones

tales que

  • (aproximacionPi n) es la aproximación de pi usando n factores de la fórmula de Vieta. Por ejemplo,

  • (errorPi x) es el menor número de factores de la fórmula de Vieta necesarios para obtener pi con un error menor que x. Por ejemplo,

Soluciones

Caminos en un árbol binario con suma dada

Los árboles binarios se pueden representar con el de tipo de dato algebraico

Por ejemplo, los árboles

se representan por

Definir las funciones

tales que

  • (caminos a) es la lista de los caminos entre dos nodos cualesquiera del árbol a. Por ejemplo,

  • (caminosSuma a k) es la lista de los caminos entre dos nodos cualesquiera del árbol a cuya suma es k. Por ejemplo,

Soluciones

Referencia

Basado en Print all k-sum paths in a binary tree de GeeksforGeeks.

Caminos desde la raíz en un árbol binario

Los árboles binarios se pueden representar con el de tipo de dato algebraico

Por ejemplo, los árboles

se representan por

Definir la función

tal que (caminosDesdeRaiz a) es la lista de las caminosDesdeRaiz desde la raíz de a hasta cualquiera de sus nodos. Por ejemplo.

Soluciones

Prefijo con suma acotada

Definir la función

tal que (prefijoAcotado x ys) es el mayor prefijo de ys cuya suma es menor que x. Por ejemplo,

Soluciones