Biparticiones de un número

Definir la función

tal que (biparticiones n) es la lista de pares de números formados por las primeras cifras de n y las restantes. Por ejemplo,

Soluciones

Números completos

Las descomposiciones de un número n son las parejas de números (x,y) tales que x >= y y la suma de las cuatro operaciones básicas (suma, producto, resta (el mayor menos el menor) y cociente (el mayor entre el menor)) es el número n. Por ejemplo, (8,2) es una descomposición de 36 ya que

Un número es completo si tiene alguna descomposición como las anteriores. Por ejemplo, el 36 es completo pero el 21 no lo es.

Definir las siguientes funciones

tales que

  • (descomposiciones n) es la lista de las descomposiones de n. Por ejemplo,

  • completos es la lista de los números completos. Por ejemplo,

Soluciones

Números libres de cuadrados

Un número entero positivo es libre de cuadrados si no es divisible el cuadrado de ningún entero mayor que 1. Por ejemplo, 70 es libre de cuadrado porque sólo es divisible por 1, 2, 5, 7 y 70; en cambio, 40 no es libre de cuadrados porque es divisible por 2^2.

Definir la función

tal que (libreDeCuadrados x) se verifica si x es libre de cuadrados. Por ejemplo,

Otro ejemplo,

Soluciones

El problema de las celebridades

La celebridad de una reunión es una persona al que todos conocen pero que no conoce a nadie. Por ejemplo, si en la reunión hay tres personas tales que la 1 conoce a la 3 y la 2 conoce a la 1 y a la 3, entonces la celebridad de la reunión es la 3.

La relación de conocimiento se puede representar mediante una lista de pares (x,y) indicando que x conoce a y. Por ejemplo, ka reunioń anterior se puede representar por [(1,3),(2,1),(2,3)].

Definir la función

tal que (celebridad r) es el justo la celebridad de r, si en r hay una celebridad y Nothing, en caso contrario. Por ejemplo,

Soluciones

[schedule expon=’2017-05-16′ expat=»06:00″]

  • Las soluciones se pueden escribir en los comentarios hasta el 16 de mayo.
  • El código se debe escribir entre una línea con <pre lang=»haskell»> y otra con </pre>

[/schedule]

[schedule on=’2017-05-16′ at=»06:00″]

[/schedule]

Sucesión de Recamán

La sucesión de Recamán está definida como sigue:

Definir las funciones

tales que

  • sucRecaman es la lista de los términos de la sucesión de Recamám. Por ejemplo,

  • (invRecaman n) es la primera posición de n en la sucesión de Recamán. Por ejemplo,

  • (graficaSucRecaman n) dibuja los n primeros términos de la sucesión de Recamán. Por ejemplo, (graficaSucRecaman 300) dibuja
    Sucesion_de_Recaman_1
  • (graficaInvRecaman n) dibuja los valores de (invRecaman k) para k entre 0 y n. Por ejemplo, (graficaInvRecaman 17) dibuja
    Sucesion_de_Recaman_2
    y (graficaInvRecaman 100) dibuja
    Sucesion_de_Recaman_3

Soluciones

Operaciones con series de potencias

Una serie de potencias es una serie de la forma

Las series de potencias se pueden representar mediante listas infinitas. Por ejemplo, la serie de la función exponencial es

y se puede representar por [1, 1, 1/2, 1/6, 1/24, 1/120, …]

Las operaciones con series se pueden ver como una generalización de las de los polinomios.

En lo que sigue, usaremos el tipo (Serie a) para representar las series de potencias con coeficientes en a y su definición es

Definir las siguientes funciones

tales que

  • (opuesta xs) es la opuesta de la serie xs. Por ejemplo,

  • (suma xs ys) es la suma de las series xs e ys. Por ejemplo,

  • (resta xs ys) es la resta de las series xs es ys. Por ejemplo,

  • (producto xs ys) es el producto de las series xs e ys. Por ejemplo,

  • (cociente xs ys) es el cociente de las series xs e ys. Por ejemplo,

  • (derivada xs) es la derivada de la serie xs. Por ejemplo,

  • (integral xs) es la integral de la serie xs. Por ejemplo,

  • expx es la serie de la función exponencial. Por ejemplo,

Soluciones

Operaciones con polinomios como diccionarios

Los polinomios se pueden representar mediante diccionarios con los exponentes como claves y los coeficientes como valores.

El tipo de los polinomios con coeficientes de tipo a se define por

Dos ejemplos de polinomios (que usaremos en los ejemplos) son

se definen por

Definir las funciones

tales que

  • (sumaPol p q) es la suma de los polinomios p y q. Por ejemplo,

  • (multPorTerm (n,a) p) es el producto del término ax^n por p. Por ejemplo,

  • (multPol p q) es el producto de los polinomios p y q. Por ejemplo,

Soluciones

Números como sumas de primos consecutivos

El número 311 se puede escribir de 5 formas distintas como suma de 1 o más primos consecutivos

el número 41 se puede escribir de 4 formas

y el número 14 no se puede escribir como suma de primos consecutivos.

Definir la función

tal que (sumas x) es la lista de las formas de escribir x como suma de uno o más números primos consecutivos. Por ejemplo,

Soluciones

Subnúmeros pares

Los subnúmeros de un número x son los números que se pueden formar con dígitos de x en posiciones consecutivas. Por ejemplo, el número 254 tiene 6 subnúmeros: 2, 5, 4, 25, 54 y 254.

Definir las funciones

tales que

  • (subnumerosPares x) es la lista de los subnúmeros pares de x. Por ejemplo,

  • (nSubnumerosPares x) es la cantidad de subnúmeros pares de x. Por ejemplo,

Soluciones

Elementos con su doble en el conjunto

Definir la función

tal que (conDoble xs) es la lista de los elementos del conjunto xs (representado como una lista sin elementos repetidos) cuyo doble pertenece a xs. Por ejemplo,

Referencia: Basado en el problema Doubles de POJ (Peking University Online Judge System).

Soluciones

Clases de equivalencia

Definir la función

tal que (clasesEquivalencia xs r) es el conjunto de las clases de equivalencia de xs respecto de la relación de equivalencia r. Por ejemplo,

Soluciones

Problema de las jarras

En el problema de las jarras (A,B,C) se tienen dos jarras sin marcas de medición, una de A litros de capacidad y otra de B. También se dispone de una bomba que permite llenar las jarras de agua.

El problema de las jarras (A,B,C) consiste en determinar cómo se puede lograr tener exactamente C litros de agua en alguna de las dos jarras.

Definir la función

tal (jarras (a,b,c)) es una solución del problema de las jarras (a,b,c) con el mínimo número de movimientos, si el problema tiene solución y Nothing, en caso contrario. Por ejemplo,

La interpretación de la solución anterior es

Otros ejemplos:

Soluciones

Agrupamiento según valores

Definir la función

tal que (agrupa f xs) es el diccionario obtenido agrupando los elementos de xs según sus valores mediante la función f. Por ejemplo,

Soluciones

Distancias entre primos consecutivos

Los 15 primeros números primos son

Las distancias entre los elementos consecutivos son

La distribución de las distancias es

(es decir, el 1 aparece una vez, el 2 aparece 6 veces, etc.) La frecuencia de las distancias es

(es decir, el 1 aparece el 7.142857%, el 2 el 42.857143% etc.)

Definir las funciones

tales que

  • (cuentaDistancias n) es la distribución de distancias entre los n primeros primos consecutivos. Por ejemplo,

  • (frecuenciasDistancias n) es la frecuencia de distancias entre los n primeros primos consecutivos. Por ejemplo,

  • (graficas ns) dibuja las gráficas de (frecuenciasDistancias k) para k en ns. Por ejemplo, (graficas [10,20,30]) dibuja
    Distancias_entre_primos_consecutivos1
    (graficas [1000,2000,3000]) dibuja
    Distancias_entre_primos_consecutivos2
    y (graficas [100000,200000,300000]) dibuja
    Distancias_entre_primos_consecutivos3
  • (distanciasMasFrecuentes n) es la lista de las distancias más frecuentes entre los elementos consecutivos de la lista de los n primeros primos. Por ejemplo,

Comprobar con QuickCheck si para todo n > 160 se verifica que (distanciasMasFrecuentes n) es [6].

Soluciones

Rotaciones divisibles por 4

Las rotaciones de 928160 son 928160, 281609, 816092, 160928, 609281 y 92816. De las cuales, las divisibles por 4 son 928160, 816092, 160928 y 92816.

Definir la función

tal que (nRotacionesDivisibles n) es el número de rotaciones del número n divisibles por 4. Por ejemplo,

Soluciones

Sumas con sumandos distintos o con sumandos impares

El número 6 se puede descomponer de 4 formas distintas como suma con sumandos distintos:

y también se puede descomponer de 4 formas distintas como suma con sumandos impares:

Definir las siguientes funciones

tales que

  • (sumasSumandosDistintos n) es la lista de las descomposiciones de n como sumas con sumandos distintos. Por ejemplo,

  • (nSumasSumandosDistintos n) es el número de descomposiciones de n como sumas con sumandos distintos. Por ejemplo,

  • (sumasSumandosImpares n) es la lista de las descomposiones de n como sumas con sumandos impares. Por ejemplo,

  • (nSumasSumandosImpares n) es el número de descomposiciones de n como sumas con sumandos impares. Por ejemplo,

  • (igualdadDeSumas n) se verifica si, para todo k entre 1 y n, las funciones nSumasSumandosDistintos y nSumasSumandosImpares son iguales. Por ejemplo,

Soluciones

Número de dígitos del factorial

Definir las funciones

tales que

  • (nDigitosFact n) es el número de dígitos de n!. Por ejemplo,

  • (graficas xs) dibuja las gráficas de los números de dígitos del factorial de k (para k en xs) y de la recta y = 5.5 x. Por ejemplo, (graficas [0,500..10^6]) dibuja
    Numero_de_digitos_del_factorial

Nota: Este ejercicio está basado en el problema How many digits? de Kattis en donde se impone la restricción de calcular, en menos de 1 segundo, el número de dígitos de los factoriales de 10.000 números del rango [0,1.000.000].

Se puede simular como sigue

Soluciones

Representación de conjuntos mediante intervalos

Un conjunto de números enteros se pueden representar mediante una lista ordenada de intervalos tales que la diferencia entre el menor elemento de un intervalo y el mayor elemento de su intervalo anterior es mayor que uno.

Por ejemplo, el conjunto {2, 7, 4, 3, 9, 6} se puede representar mediante la lista de intervalos [(2,4),(6,7),(9,9)] de forma que en el primer intervalo se agrupan los números 2, 3 y 4; en el segundo, los números 6 y 7 y el tercero, el número 9.

Definir la función

tal que (intervalos xs) es lista ordenada de intervalos que representa al conjunto xs. Por ejemplo,

Nota: Este ejercicio está basado en el problema Bus numbers de Kattis

Soluciones

Codificación matricial

El procedimiento de codificación matricial se puede entender siguiendo la codificación del mensaje "todoparanada" como se muestra a continuación:

  • Se calcula la longitud L del mensaje. En el ejemplo es L es 12.
  • Se calcula el menor entero positivo N cuyo cuadrado es mayor o igual que L. En el ejemplo N es 4.
  • Se extiende el mensaje con N²-L asteriscos. En el ejemplo, el mensaje extendido es "todoparanada****"
  • Con el mensaje extendido se forma una matriz cuadrada NxN. En el ejemplo la matriz es

  • Se rota 90º la matriz del mensaje extendido. En el ejemplo, la matriz rotada es

  • Se calculan los elementos de la matriz rotada. En el ejemplo, los elementos son "*npt*aap*drd*aao"
  • El mensaje codificado se obtiene eliminando los asteriscos de los elementos de la matriz rotada. En el ejemplo, "nptaapdrdaao".

Definir la función

tal que (codificado cs) es el mensaje obtenido aplicando la codificación matricial al mensaje cs. Por ejemplo,

Nota: Este ejercicio está basado en el problema Secret Message de Kattis.

Soluciones

Reducción de repeticiones consecutivas

Definir la función

tal que (reducida xs) es la lista obtenida a partir de xs de forma que si hay dos o más elementos idénticos consecutivos, borra las repeticiones y deja sólo el primer elemento. Por ejemplo,

Nota: Basado en el ejercicio Apaxiaaaaaaaaaaaans! de Kattis.

Soluciones

Suma de subconjuntos

Los subconjuntos de [1, 4, 2] son

Las sumas de sus elementos son

Y la suma de las sumas es 28.

Definir la función

tal que (sumaSubconjuntos xs) es la suma de las sumas de los
subconjuntos de xs. Por ejemplo,

Soluciones

Por 3 o más 5

El enunciado del problema Por 3 o más 5 de ¡Acepta el reto! es el siguiente

Cuenta la leyenda que un famoso matemático, tras aprender a sumar y multiplicar a la tierna edad de 3 años en apenas 5 días, se dio cuenta de que, empezando por 1, podía generar un montón de números sin más que multiplicar por 3 o sumar 5 a alguno de los que ya hubiera generado antes.

Por ejemplo, el 23 (edad a la que se casaría) lo obtuvo así: ((1 + 5) × 3) + 5
Por su parte el 77 (edad a la que tendría su primer bisnieto) lo consiguió: (((1 × 3 + 5) × 3) × 3) + 5

Por mucho que lo intentó, algunos números, sin embargo, resultaron ser imposibles de obtener, como por ejemplo el 5, el 7 o el 15.

Se dice que un número es generable si se puede escribir como una sucesión (quizá vacía) de multiplicaciones por 3 y sumas de 5 al número 1.

Definir las siguientes funciones

tales que

  • generables es la sucesión de los números generables. Por ejemplo,

  • (generable x) se verifica si x es generable. Por ejemplo,

  • (arbolGenerable x) es el árbol de los números generables menores o iguales a x. Por ejemplo,

Soluciones

Números cubifinitos

El enunciado del problema Números cubifinitos de ¡Acepta el reto! es el siguiente

Se dice que un número es cubifinito cuando al elevar todos sus dígitos al cubo y sumarlos el resultado o bien es 1 o bien es un número cubifinito.

Por ejemplo, el número 1243 es cubifinito, pues al elevar todos sus dígitos al cubo obtenemos 100 que es cubifinito.

Por su parte, el 513 no es cubifinito, pues al elevar al cubo sus dígitos conseguimos el 153 que nunca podrá ser cubifinito, pues la suma de los cubos de sus dígitos vuelve a dar 153.

Definir las funciones

tales que

  • (esCubifinito n) se verifica si n es un número cubifinito. Por ejemplo,

  • (grafica n) dibuja la gráfica de la sucesión de los primeros n números cubifinitos. Por ejemplo, al evaluar (grafica 50) se dibuja
    Numeros_cubifinitos

Soluciones

Distribución de diferencias de dígitos consecutivos de pi

La distribución de las diferencias de los dígitos consecutivos para los 18 primeros dígitos de pi se calcula como sigue: los primeros 18 dígitos de pi son

Las diferencias de sus elementos consecutivos es

y la distribución de sus frecuencias en el intervalo [-9,9] es

es decir, el desde el -9 a -5 no aparecen, el -4 aparece 3 veces, el -2 aparece 2 veces y así sucesivamente.

Definir las funciones

tales que

  • (distribucionDDCpi n) es la distribución de las diferencias de los dígitos consecutivos para los primeros n dígitos de pi. Por ejemplo,

  • (graficas ns f) dibuja en el fichero f las gráficas de las distribuciones de las diferencias de los dígitos consecutivos para los primeros n dígitos de pi, para n en ns. Por ejemplo, al evaluar (graficas [100,250..4000] «distribucionDDCpi.png» se escribe en el fichero «distribucionDDCpi.png» la siguiente gráfica
    Distribucion_de_diferencias_de_digitos_consecutivos_de_pi

Nota: Se puede usar la librería Data.Number.CReal.

Soluciones

Números de Catalan

Los números de Catalan forman la sucesión cuyo término general es
Numeros_de_Catalan_1

Los primeros números de Catalan son

Los números de Catalan satisfacen la siguiente relación de recurrencia:
Numeros_de_Catalan_2

Asintóticamente, los números de Catalan crecen como:
Numeros_de_Catalan_3
considerando que el cociente entre el n-ésimo número de Catalan y la expresión de la derecha tiende hacia 1 cuando n tiende a infinito.

Definir las funciones

tales que

  • catalan es la lista de términos de la sucesión de Catalan. Por ejemplo,

  • (grafica a b) dibuja los n-ésimos términos de la sucesión de Catalan, para n entre a y b, junto con los de la expresión de la derecha de
    Numeros_de_Catalan_3
    Por ejemplo, (grafica 5 10) dibuja
    Numeros_de_Catalan_4
    y (grafica 55 60) dibuja
    Numeros_de_Catalan_5

Soluciones

Caminos minimales en un arbol numérico

En la librería Data.Tree se definen los árboles y los bosques como sigue

Se pueden definir árboles. Por ejemplo,

Y se pueden dibujar con la función drawTree. Por ejemplo,

Los mayores divisores de un número x son los divisores u tales que u > 1 y existe un v tal que 1 < v < u y u*v = x. Por ejemplo, los mayores divisores de 24 son 12, 8 y 6.

El árbol de los predecesores y mayores divisores de un número x es el árbol cuya raíz es x y los sucesores de cada nodo y > 1 es el conjunto formado por y-1 junto con los mayores divisores de y. Los nodos con valor 1 no tienen sucesores. Por ejemplo, el árbol de los predecesores y mayores divisores del número 6 es

Definir las siguientes funciones

tales que

  • (mayoresDivisores x) es la lista de los mayores divisores de x. Por ejemplo,

  • (arbol x) es el árbol de los predecesores y mayores divisores del número x. Por ejemplo,

  • (caminos x) es la lista de los caminos en el árbol de los predecesores y mayores divisores del número x. Por ejemplo,

  • (caminosMinimales x) es la lista de los caminos en de menor longitud en el árbol de los predecesores y mayores divisores del número x. Por ejemplo,

Soluciones

Generadores de números de Gabonacci

Los números de Gabonacci generados por (a,b) son los elementos de la sucesión de Gabonacci definida por

Por ejemplo, la sucesión de Gabonacci generada por (2,5) es 2, 5, 7, 12, 19, 31, 50, 81, 131, 212, …

Un número pertenece a distintas sucesiones de Gabonacci. Por ejemplo, el 9 pertenece a las sucesiones de Gabonacci generados por (3,3), (1,4) y (4,5).

El menor generador de Gabonacci de un número x es el par (a,b), con 1 ≤ a ≤ b, tal que (a,b) es un generador de Gabonacci de x y no existe ningún generador de Gabonacci de x (a’,b’) tal que b’ < b ó b’ = b y a’ < a. Por ejemplo, el menor generador de Gabonacci de 9 es (3,3).

Definir la función

tal que (menorGenerador x) es el menor generador de Gabonacci de x. Por ejemplo,

Soluciones

Números binarios invertidos

La representación binaria de 13 es 1101, que al invertirlo da 1011 cuya representación decimal es el número 11.

Definir la función

tal que (transformado x) es la representación decimal del número obtenido invirtiendo la representación binaria de x. Por ejemplo,

Nota: El ejercicio está basado en el problema Reversed Binary Numbers de Kattis.

Soluciones

Números construibles como sumas de dos dados

Un número x es construible a partir de de los números enteros positivos a y b si se puede escribir como una suma cuyos sumandos son a o b. Por ejemplo, 7 y 9 son construibles a partir de 2 y 3 ya que 7 = 2+2+3 y 9 = 3+3+3.

Definir las funciones

tales que

  • (construibles a b) es la lista de los números construibles a partir de a y b. Por ejemplo,

  • (esConstruible a b x) se verifica si x es construible a partir de a y b. Por ejemplo,

Soluciones

Contando en la arena

El problema de ayer de ¡Acepta el reto! fue Contando en la arena cuyo enunciado es el siguiente:

Es ampliamente conocido que escribimos los números utilizando base 10, en la que expresamos las cantidades utilizando 10 dígitos distintos (0…9). El valor de cada uno de ellos depende de la posición que ocupe dentro del número, pues cada dígito se multiplica por una potencia de 10 distinta según cuál sea esa posición.

La descomposición, por ejemplo, del número 1.234 es: 1.234 = 1×10^3 + 2×10^2 + 3×10^1 + 4×10^0

Otra base muy conocida es la base 2 al ser la utilizada por los dispositivos electrónicos. En ella sólo hay dos dígitos distintos (0 y 1), que se ven multiplicados por potencias de 2.

Mucho antes de que llegaran la base 2, la base 10 e incluso los números romanos, los primeros seres humanos contaban haciendo surcos en la arena, muescas en un trozo de madera o colocando palos en línea. Estaban, sin saberlo, usando base 1. En ella sólo hay un símbolo y cada dígito es multiplicado por una potencia de 1. Dado que 1^n = 1 el resultado es que todos los dígitos tienen el mismo peso.

Definir la función

tal que al evaluar (transformaAbase1 f1 f2) lee el contenido del fichero f1 (que estará compuesto por distintos números mayores que 0, cada uno en una línea) y escribe en el fichero f2 una línea con la representación en base 1 de cada uno de los números de f1 excepto el 0 final. Por ejemplo, si el contenido de «Entrada.txt» es

al evaluar (transformaAbase1 «Entrada.txt» «Salida.txt») el contenido de «Salida.txt» debe de ser

Soluciones