Números dígito potenciales

Un número entero x es dígito potencial de orden n si x es la suma de los dígitos de x elevados a n. Por ejemplo,

  • 153 es un dígito potencial de orden 3 ya que 153 = 1^3+5^3+3^3
  • 4150 es un dígito potencial de orden 5 ya que 4150 = 4^5+1^5+5^5+0^5

Un número x es dígito auto potencial si es un dígito potencial de orden n, donde n es el número de dígitos de n. Por ejemplo, 153 es un número dígito auto potencial.

Definir las funciones

tales que

  • (digitosPotencialesOrden n) es la lista de los números dígito potenciales de orden n. Por ejemplo,

  • digitosAutoPotenciales es la lista de los números dígito auto potenciales. Por ejemplo,

Soluciones

Pares definidos por su MCD y su MCM

Definir las siguientes funciones

tales que

  • (pares a b) es la lista de los pares de números enteros positivos tales que su máximo común divisor es a y su mínimo común múltiplo es b. Por ejemplo,

  • (nPares a b) es el número de pares de enteros positivos tales que su máximo común divisor es a y su mínimo común múltiplo es b. Por ejemplo,

Soluciones

El problema de las celebridades

La celebridad de una reunión es una persona al que todos conocen pero que no conoce a nadie. Por ejemplo, si en la reunión hay tres personas tales que la 1 conoce a la 3 y la 2 conoce a la 1 y a la 3, entonces la celebridad de la reunión es la 3.

La relación de conocimiento se puede representar mediante una lista de pares (x,y) indicando que x conoce a y. Por ejemplo, ka reunioń anterior se puede representar por [(1,3),(2,1),(2,3)].

Definir la función

tal que (celebridad r) es el justo la celebridad de r, si en r hay una celebridad y Nothing, en caso contrario. Por ejemplo,

Soluciones

[schedule expon=’2017-05-16′ expat=»06:00″]

  • Las soluciones se pueden escribir en los comentarios hasta el 16 de mayo.
  • El código se debe escribir entre una línea con <pre lang=»haskell»> y otra con </pre>

[/schedule]

[schedule on=’2017-05-16′ at=»06:00″]

[/schedule]

Sucesión de Recamán

La sucesión de Recamán está definida como sigue:

Definir las funciones

tales que

  • sucRecaman es la lista de los términos de la sucesión de Recamám. Por ejemplo,

  • (invRecaman n) es la primera posición de n en la sucesión de Recamán. Por ejemplo,

  • (graficaSucRecaman n) dibuja los n primeros términos de la sucesión de Recamán. Por ejemplo, (graficaSucRecaman 300) dibuja
    Sucesion_de_Recaman_1
  • (graficaInvRecaman n) dibuja los valores de (invRecaman k) para k entre 0 y n. Por ejemplo, (graficaInvRecaman 17) dibuja
    Sucesion_de_Recaman_2
    y (graficaInvRecaman 100) dibuja
    Sucesion_de_Recaman_3

Soluciones

Operaciones con series de potencias

Una serie de potencias es una serie de la forma

Las series de potencias se pueden representar mediante listas infinitas. Por ejemplo, la serie de la función exponencial es

y se puede representar por [1, 1, 1/2, 1/6, 1/24, 1/120, …]

Las operaciones con series se pueden ver como una generalización de las de los polinomios.

En lo que sigue, usaremos el tipo (Serie a) para representar las series de potencias con coeficientes en a y su definición es

Definir las siguientes funciones

tales que

  • (opuesta xs) es la opuesta de la serie xs. Por ejemplo,

  • (suma xs ys) es la suma de las series xs e ys. Por ejemplo,

  • (resta xs ys) es la resta de las series xs es ys. Por ejemplo,

  • (producto xs ys) es el producto de las series xs e ys. Por ejemplo,

  • (cociente xs ys) es el cociente de las series xs e ys. Por ejemplo,

  • (derivada xs) es la derivada de la serie xs. Por ejemplo,

  • (integral xs) es la integral de la serie xs. Por ejemplo,

  • expx es la serie de la función exponencial. Por ejemplo,

Soluciones

Elementos con su doble en el conjunto

Definir la función

tal que (conDoble xs) es la lista de los elementos del conjunto xs (representado como una lista sin elementos repetidos) cuyo doble pertenece a xs. Por ejemplo,

Referencia: Basado en el problema Doubles de POJ (Peking University Online Judge System).

Soluciones

Ampliación de una matriz

Definir, usando Data.Matrix, la función

tal que (ampliaMatriz p f c) es la matriz obtenida a partir de p repitiendo cada fila f veces y cada columna c veces. Por ejemplo, si ej1 es la matriz definida por

entonces

Nota: Este ejercicio está basado en el problema Skener de Kattis.

Soluciones

Problema de las jarras

En el problema de las jarras (A,B,C) se tienen dos jarras sin marcas de medición, una de A litros de capacidad y otra de B. También se dispone de una bomba que permite llenar las jarras de agua.

El problema de las jarras (A,B,C) consiste en determinar cómo se puede lograr tener exactamente C litros de agua en alguna de las dos jarras.

Definir la función

tal (jarras (a,b,c)) es una solución del problema de las jarras (a,b,c) con el mínimo número de movimientos, si el problema tiene solución y Nothing, en caso contrario. Por ejemplo,

La interpretación de la solución anterior es

Otros ejemplos:

Soluciones

Distancias entre primos consecutivos

Los 15 primeros números primos son

Las distancias entre los elementos consecutivos son

La distribución de las distancias es

(es decir, el 1 aparece una vez, el 2 aparece 6 veces, etc.) La frecuencia de las distancias es

(es decir, el 1 aparece el 7.142857%, el 2 el 42.857143% etc.)

Definir las funciones

tales que

  • (cuentaDistancias n) es la distribución de distancias entre los n primeros primos consecutivos. Por ejemplo,

  • (frecuenciasDistancias n) es la frecuencia de distancias entre los n primeros primos consecutivos. Por ejemplo,

  • (graficas ns) dibuja las gráficas de (frecuenciasDistancias k) para k en ns. Por ejemplo, (graficas [10,20,30]) dibuja
    Distancias_entre_primos_consecutivos1
    (graficas [1000,2000,3000]) dibuja
    Distancias_entre_primos_consecutivos2
    y (graficas [100000,200000,300000]) dibuja
    Distancias_entre_primos_consecutivos3
  • (distanciasMasFrecuentes n) es la lista de las distancias más frecuentes entre los elementos consecutivos de la lista de los n primeros primos. Por ejemplo,

Comprobar con QuickCheck si para todo n > 160 se verifica que (distanciasMasFrecuentes n) es [6].

Soluciones

Rotaciones divisibles por 4

Las rotaciones de 928160 son 928160, 281609, 816092, 160928, 609281 y 92816. De las cuales, las divisibles por 4 son 928160, 816092, 160928 y 92816.

Definir la función

tal que (nRotacionesDivisibles n) es el número de rotaciones del número n divisibles por 4. Por ejemplo,

Soluciones

Sumas con sumandos distintos o con sumandos impares

El número 6 se puede descomponer de 4 formas distintas como suma con sumandos distintos:

y también se puede descomponer de 4 formas distintas como suma con sumandos impares:

Definir las siguientes funciones

tales que

  • (sumasSumandosDistintos n) es la lista de las descomposiciones de n como sumas con sumandos distintos. Por ejemplo,

  • (nSumasSumandosDistintos n) es el número de descomposiciones de n como sumas con sumandos distintos. Por ejemplo,

  • (sumasSumandosImpares n) es la lista de las descomposiones de n como sumas con sumandos impares. Por ejemplo,

  • (nSumasSumandosImpares n) es el número de descomposiciones de n como sumas con sumandos impares. Por ejemplo,

  • (igualdadDeSumas n) se verifica si, para todo k entre 1 y n, las funciones nSumasSumandosDistintos y nSumasSumandosImpares son iguales. Por ejemplo,

Soluciones

Número de dígitos del factorial

Definir las funciones

tales que

  • (nDigitosFact n) es el número de dígitos de n!. Por ejemplo,

  • (graficas xs) dibuja las gráficas de los números de dígitos del factorial de k (para k en xs) y de la recta y = 5.5 x. Por ejemplo, (graficas [0,500..10^6]) dibuja
    Numero_de_digitos_del_factorial

Nota: Este ejercicio está basado en el problema How many digits? de Kattis en donde se impone la restricción de calcular, en menos de 1 segundo, el número de dígitos de los factoriales de 10.000 números del rango [0,1.000.000].

Se puede simular como sigue

Soluciones

Representación de conjuntos mediante intervalos

Un conjunto de números enteros se pueden representar mediante una lista ordenada de intervalos tales que la diferencia entre el menor elemento de un intervalo y el mayor elemento de su intervalo anterior es mayor que uno.

Por ejemplo, el conjunto {2, 7, 4, 3, 9, 6} se puede representar mediante la lista de intervalos [(2,4),(6,7),(9,9)] de forma que en el primer intervalo se agrupan los números 2, 3 y 4; en el segundo, los números 6 y 7 y el tercero, el número 9.

Definir la función

tal que (intervalos xs) es lista ordenada de intervalos que representa al conjunto xs. Por ejemplo,

Nota: Este ejercicio está basado en el problema Bus numbers de Kattis

Soluciones

Reducción de repeticiones consecutivas

Definir la función

tal que (reducida xs) es la lista obtenida a partir de xs de forma que si hay dos o más elementos idénticos consecutivos, borra las repeticiones y deja sólo el primer elemento. Por ejemplo,

Nota: Basado en el ejercicio Apaxiaaaaaaaaaaaans! de Kattis.

Soluciones

Suma de subconjuntos

Los subconjuntos de [1, 4, 2] son

Las sumas de sus elementos son

Y la suma de las sumas es 28.

Definir la función

tal que (sumaSubconjuntos xs) es la suma de las sumas de los
subconjuntos de xs. Por ejemplo,

Soluciones

Caminos minimales en un arbol numérico

En la librería Data.Tree se definen los árboles y los bosques como sigue

Se pueden definir árboles. Por ejemplo,

Y se pueden dibujar con la función drawTree. Por ejemplo,

Los mayores divisores de un número x son los divisores u tales que u > 1 y existe un v tal que 1 < v < u y u*v = x. Por ejemplo, los mayores divisores de 24 son 12, 8 y 6.

El árbol de los predecesores y mayores divisores de un número x es el árbol cuya raíz es x y los sucesores de cada nodo y > 1 es el conjunto formado por y-1 junto con los mayores divisores de y. Los nodos con valor 1 no tienen sucesores. Por ejemplo, el árbol de los predecesores y mayores divisores del número 6 es

Definir las siguientes funciones

tales que

  • (mayoresDivisores x) es la lista de los mayores divisores de x. Por ejemplo,

  • (arbol x) es el árbol de los predecesores y mayores divisores del número x. Por ejemplo,

  • (caminos x) es la lista de los caminos en el árbol de los predecesores y mayores divisores del número x. Por ejemplo,

  • (caminosMinimales x) es la lista de los caminos en de menor longitud en el árbol de los predecesores y mayores divisores del número x. Por ejemplo,

Soluciones

Contando en la arena

El problema de ayer de ¡Acepta el reto! fue Contando en la arena cuyo enunciado es el siguiente:

Es ampliamente conocido que escribimos los números utilizando base 10, en la que expresamos las cantidades utilizando 10 dígitos distintos (0…9). El valor de cada uno de ellos depende de la posición que ocupe dentro del número, pues cada dígito se multiplica por una potencia de 10 distinta según cuál sea esa posición.

La descomposición, por ejemplo, del número 1.234 es: 1.234 = 1×10^3 + 2×10^2 + 3×10^1 + 4×10^0

Otra base muy conocida es la base 2 al ser la utilizada por los dispositivos electrónicos. En ella sólo hay dos dígitos distintos (0 y 1), que se ven multiplicados por potencias de 2.

Mucho antes de que llegaran la base 2, la base 10 e incluso los números romanos, los primeros seres humanos contaban haciendo surcos en la arena, muescas en un trozo de madera o colocando palos en línea. Estaban, sin saberlo, usando base 1. En ella sólo hay un símbolo y cada dígito es multiplicado por una potencia de 1. Dado que 1^n = 1 el resultado es que todos los dígitos tienen el mismo peso.

Definir la función

tal que al evaluar (transformaAbase1 f1 f2) lee el contenido del fichero f1 (que estará compuesto por distintos números mayores que 0, cada uno en una línea) y escribe en el fichero f2 una línea con la representación en base 1 de cada uno de los números de f1 excepto el 0 final. Por ejemplo, si el contenido de «Entrada.txt» es

al evaluar (transformaAbase1 «Entrada.txt» «Salida.txt») el contenido de «Salida.txt» debe de ser

Soluciones

Precisión de aproximaciones de pi

La precisión de una aproximación x de pi es el número de dígitos comunes entre el inicio de x y de pi. Por ejemplo, puesto que 355/113 es 3.1415929203539825 y pi es 3.141592653589793, la precisión de 355/113 es 7.

Definir las siguientes funciones

tales que

  • (mayorPrefijoComun xs ys) es el mayor prefijo común de xs e ys. Por ejemplo,

  • (precisionPi x) es la precisión de la aproximación de pi x. Por ejemplo,

  • (precisionPiCR x) es la precisión de la aproximación de pi x, como números reales. Por ejemplo,

Nota: Para la definición precisionPiCR se usa la librería Data.Number.CReal que se instala con

Soluciones

Cálculo de pi mediante la fracción continua de Lange

En 1999, L.J. Lange publicó el artículo An elegant new continued fraction for π.

En el primer teorema del artículo se demuestra la siguiente expresión de π mediante una fracción continua
Calculo_de_pi_mediante_la_fraccion_continua_de_Lange

La primeras aproximaciones son

Definir las funciones

tales que

  • (aproximacionPi n) es la n-ésima aproximación de pi con la fracción continua de Lange. Por ejemplo,

  • (grafica xs) dibuja la gráfica de las k-ésimas aproximaciones de pi donde k toma los valores de la lista xs. Por ejemplo, (grafica [1..10]) dibuja
    Calculo_de_pi_mediante_la_fraccion_continua_de_Lange_2
    (grafica [10..100]) dibuja
    Calculo_de_pi_mediante_la_fraccion_continua_de_Lange_3
    y (grafica [100..200]) dibuja
    Calculo_de_pi_mediante_la_fraccion_continua_de_Lange_4

Nota: Este ejercicio ha sido propuesto por Antonio Morales.

Soluciones

Cálculo de pi mediante la variante de Euler de la serie armónica

En el artículo El desarrollo más bello de Pi como suma infinita, Miguel Ángel Morales comenta el desarrollo de pi publicado por Leonhard Euler en su libro «Introductio in Analysis Infinitorum» (1748).

El desarrollo es el siguiente
Calculo_de_pi_mediante_la_variante_de_Euler_de_la_serie_armonica_1
y se obtiene a partir de la serie armónica
Calculo_de_pi_mediante_la_variante_de_Euler_de_la_serie_armonica_2
modificando sólo el signo de algunos términos según el siguiente criterio:

  • Dejamos un + cuando el denominador de la fracción sea un 2 o un primo de la forma 4m-1.
  • Cambiamos a – si el denominador de la fracción es un primo de la forma 4m+1.
  • Si el número es compuesto ponemos el signo que quede al multiplicar los signos correspondientes a cada factor.

Por ejemplo,

  • la de denominador 3 = 4×1-1 lleva un +,
  • la de denominador 5 = 4×1+1 lleva un -,
  • la de denominador 13 = 4×3+1 lleva un -,
  • la de denominador 6 = 2×3 lleva un + (porque los dos llevan un +),
  • la de denominador 10 = 2×5 lleva un – (porque el 2 lleva un + y el 5 lleva un -) y
  • la de denominador 50 = 5x5x2 lleva un + (un – por el primer 5, otro – por el segundo 5 y un + por el 2).

Definir las funciones

tales que

  • (aproximacionPi n) es la aproximación de pi obtenida sumando los n primeros términos de la serie de Euler. Por ejemplo.

  • (grafica n) dibuja la gráfica de las aproximaciones de pi usando k sumando donde k toma los valores de la lista [100,110..n]. Por ejemplo, al evaluar (grafica 4000) se obtiene
    Calculo_de_pi_mediante_la_variante_de_Euler_de_la_serie_armonica_3.png

Nota: Este ejercicio ha sido propuesto por Paula Macías.

Soluciones

Sucesión de trazas de dígitos de pi

El fichero Digitos_de_pi.txt contiene el número pi con un millón de decimales; es decir,

Las matrices de orden 1×1, 2×2, …, 5×5 formadas por los primeros dígitos de pi son

y sus trazas (es decir, sumas de los elementos de la diagonal principal) son 3, 4, 13, 20 y 25, respectivamente.

Definir la función

tal que (trazas n) es la lista de las trazas de las matrices de orden 1×1, 2×2, 3×3, …, nxn formadas por los primeros dígitos de pi. Por ejemplo,

Soluciones

Cálculo de pi usando la fórmula de Vieta

La fórmula de Vieta para el cálculo de pi es la siguiente
Calculo_de_pi_usando_la_formula_de_Vieta

Definir las funciones

tales que

  • (aproximacionPi n) es la aproximación de pi usando n factores de la fórmula de Vieta. Por ejemplo,

  • (errorPi x) es el menor número de factores de la fórmula de Vieta necesarios para obtener pi con un error menor que x. Por ejemplo,

Soluciones

Prefijo con suma acotada

Definir la función

tal que (prefijoAcotado x ys) es el mayor prefijo de ys cuya suma es menor que x. Por ejemplo,

Soluciones

Sucesión de Cantor de números innombrables

Un número es innombrable si es divisible por 7 o alguno de sus dígitos es un 7. Un juego infantil consiste en contar saltándose los números innombrables:

La sucesión de Cantor se obtiene llenando los huecos de la sucesión anterior
como se indica a continuación:

Definir la sucesión

cuyos elementos son los términos de la sucesión de Cantor. Por ejemplo,

Soluciones

Referencia

Basado en Cantor’s unspeakable numbers de
CodeGolf.

Subrayado de un carácter

Definir el procedimiento

tal que (subraya cs c) escribe la cadena cs y debajo otra subrayando las ocurrencias de c. Por ejemplo,

Soluciones

Suma ordenada de listas infinitas ordenadas

Definir la función

tal que (sumaOrdenada xs ys) es la suma ordenada de las listas infinitas crecientes xs e ys. Por ejemplo,

Soluciones

Mínima suma de las ramas de un árbol

Los árboles se pueden representar mediante el siguiente tipo de datos

Por ejemplo, los árboles

se representan por

Definir la función

tal que (minimaSuma a) es el mínimo de las sumas de las ramas del árbol a. Por ejemplo,

Soluciones

Ordenación por una fila

Las matrices se pueden representar por listas de lista. Por ejemplo, la matriz

se puede representar por

Definir la función

tal que (ordenaPorFila xss k) es la matriz obtenida ordenando xs por los elementos de la fila k. Por ejemplo,

Soluciones

Ordenación por una columna

Las matrices se pueden representar por listas de lista. Por ejemplo, la matriz

se puede representar por

Definir la función

tal que (ordenaPor xss k) es la matriz obtenida ordenando xs por los elementos de la columna k. Por ejemplo,

Soluciones

Selección por posición

Definir la función

tal que (seleccion xs ps) es la lista ordenada de los elementos que ocupan las posiciones indicadas en la lista ps. Por ejemplo,

Soluciones