Cálculo de pi usando el producto de Wallis

El producto de Wallis es una expresión, descubierta por John Wallis en 1655, para representar el valor de π y que establece que:

Definir las funciones

tales que

  • factoresWallis es la sucesión de los factores del productos de Wallis. Por ejemplo,

  • productosWallis es la sucesión de los productos de los primeros factores de Wallis. Por ejemplo,

  • (aproximacionPi n) es la aproximación de pi obtenida multiplicando los n primeros factores de Wallis. Por ejemplo,

  • (errorPi x) es el menor número de factores de Wallis necesarios para obtener pi con un error menor que x. Por ejemplo,

Soluciones

Particiones de una lista

Definir la función

tal que (particiones xs) es la lista de las particiones de xs en segmentos de elementos consecutivos. Por ejemplo,

Comprobar con QuickCheck que la concatenación de cada uno de los elementos de (particiones xs) es igual a xs.

Nota: En la comprobación usar ejemplos pequeños como se indica a continuación

Soluciones

Suma minimal de productos de pares de elementos consecutivos

Al permutar los elementos de la lista [1,2,3,4] se obtienen los siguientes valores de la suma de pares de elementos consecutivos:

  • 10, por ejemplo con [1,4,2,3] ya que 1×4+2×3 = 10
  • 11, por ejemplo con [1,3,2,4] ya que 1×3+2×4 = 11
  • 14, por ejemplo con [1,2,3,4] ya que 1×2+3×4 = 14

Por tanto, la mínima suma de los productos de elementos consecutivos en las permutaciones de [1,2,3,4] es 10 y una permutación con dicha suma es [1,4,2,3].

Definir las funciones

tales que

  • (minimaSumaProductos xs) es la mínima suma de los productos de elementos consecutivos en las permutaciones de lista xs, suponiendo que xs tiene un número par de elementos. Por ejemplo,

  • (permutacionMinimal xs) es una permutación de xs cuya suma de productos de elementos consecutivos de xs es la mínima suma de los productos de elementos consecutivos en las permutaciones de lista xs, suponiendo que xs tiene un número par de elementos. Por ejemplo,

Soluciones

La sucesión «Mira y di»

La sucesión «Mira y di» (en inglés, Look-and-Say) es una sucesión de números naturales en donde cada término se obtiene agrupando las cifras iguales del anterior y recitándolas. Por ejemplo, si x(0) = 1 se lee como «un uno» y por tanto x(1) = 11. Análogamente,

Definir la función

tal que (sucMiraYDi n) es la sucesión «Mira y di» cuyo primer término es n. Por ejemplo,

Independientemente del término inicial x(0) elegido (con la única salvedad del 22), la sucesión diverge y la razón entre el número de cifras de x(n) y el de x(n-1) tiende a un valor fijo que es la constante de Conway λ ≈ 1.303577269. Por ejemplo, para x(0) = 1, las razones son

Definir la función

tal que (aproximacionConway n e) es el menor k tal que la diferencia entre la constante de Conway y la razón entre el número de cifras de x(k) x(k-1) es, en valor absoluto, menor que e. Por ejemplo,

Nota: Este ejercicio ha sido propuesto por Elías Guisado.

Soluciones

Cadena de primos

La lista de los primeros números primos es

Los primeros elementos de la cadena obtenida concatenado los números primos es

Definir la función

tal que (primoEnPosicion n) es el número primo que tiene algún dígito en la posición n de la cadena obtenida concatenado los números primos. Por ejemplo,

Soluciones

Nodos con k sucesores

Los árboles se pueden representar mediante el siguiente tipo de datos

Por ejemplo, los árboles

se representan por

Definir la función

tal que (nodos k x) es la lista de los nodos del árbol x que tienen k sucesores. Por ejemplo,

Soluciones

Números dorados

Los dígitos del número 2375 se pueden separar en dos grupos de igual tamaño ([7,2] y [5,3]) tales que para los correspondientes números (72 y 53) se verifique que la diferencia de sus cuadrados sea el número original (es decir, 72^2 – 53^2 = 2375).

Un número x es dorado si sus dígitos se pueden separar en dos grupos de igual tamaño tales que para los correspondientes números (a y b) se verifique que la diferencia de sus cuadrados sea el número original (es decir, b^2 – a^2 = x).

Definir la función

tales que (esDorado x) se verifica si x es un número dorado. Por
ejemplo,

Soluciones

Posiciones de equilibrio

Se dice que k es una posición de equilibrio de una lista xs si la suma de los elementos de xs en las posiciones menores que k es igual a la suma de los elementos de xs en las posiciones mayores que k. Por ejemplo, en la lista [-7,1,5,2,-4,3,0] el 3 es una posición de equilibrio ya que -7+1+5 = -4+3+0; también lo es el 6 ya que -7+1+5+2+(-4)+3 = 0.

Definir la función,

tal que (equilibrios xs) es la lista de las posiciones de equilibrio de xs. Por ejemplo,

Soluciones

Mayores que la mitad

Definir la función

tal que (mayoresMitad xs) es la lista de los elementos de xs que son mayores que la mitad de los elementos de xs, suponiendo que los elementos de xs son distintos. Por ejemplo,

Nota: Se considera que si la lista tiene 2n+1 elementos, su mitad tiene n elementos.

Soluciones

Caracteres en la misma posición que en el alfabeto

Un carácter c de una cadena cs está bien colocado si la posición de c en cs es la misma que en el abecedario (sin distinguir entre mayúsculas y minúsculas). Por ejemplo, los elementos bien colocados de la cadena «aBaCEria» son ‘a’, ‘B’ y ‘E’.

Definir la función

tal que (nBienColocados cs) es el número de elementos bien colocados de la cadena cs. Por ejemplo,

Soluciones

Referencias

Basado en el problema Count characters at same position as in English alphabets de Sahil Chhabra en GeeksforGeeks.

Elementos que respetan la ordenación

Se dice que un elemento x de una lista xs respeta la ordenación si x es mayor o igual que todos lo que tiene delante en xs y es menor o igual que todos lo que tiene detrás en xs. Por ejemplo, en la lista lista [3,2,1,4,6,5,7,9,8] el número 4 respeta la ordenación pero el número 5 no la respeta (porque es mayor que el 6 que está delante).

Definir la función

tal que (respetuosos xs) es la lista de los elementos de xs que respetan la ordenación. Por ejemplo,

Comprobar con QuickCheck que para cualquier lista de enteros xs se verifican las siguientes propiedades:

  • todos los elementos de (sort xs) respetan la ordenación y
  • en la lista (nub (reverse (sort xs))) hay como máximo un elemento que respeta la ordenación.

Soluciones

Máxima ramificación

Los árboles se pueden representar mediante el siguiente tipo de datos

Por ejemplo, los árboles

se representan por

En el primer ejemplo la máxima ramificación es 2 (en el nodo 1 que tiene 2 hijos), la del segundo es 3 (en el nodo 3 que tiene 3 hijos) y la del tercero es 3 (en el nodo 3 que tiene 3 hijos).

Definir la función

tal que (maximaRamificacion a) es la máxima ramificación del árbol a. Por ejemplo,

Soluciones

Subconjuntos acotados

Definir la función

tal que (subconjuntosAcotados xs k) es la lista de los subconjuntos de xs con k elementos como máximo. Por ejemplo,

Soluciones

Variación de la conjetura de Goldbach

La conjetura de Goldbach afirma que

Todo número entero mayor que 5 se puede escribir como suma de tres números primos.

En este ejercicio consideraremos la variación consistente en exigir que los tres sumandos sean distintos.

Definir las funciones

tales que

  • (sumas3PrimosDistintos n) es la lista de las descomposiciones decrecientes de n como tres primos distintos. Por ejemplo,

  • (conKsumas3PrimosDistintos k n) es la lista de los números menores o iguales que n que se pueden escribir en k forma distintas como suma de tres primos distintos. Por ejemplo,

  • (noSonSumas3PrimosDistintos n) es la lista de los números menores o iguales que n que no se pueden escribir como suma de tres primos distintos. Por ejemplo,

Soluciones

Referencias

Basado en el artículo Derivaciones de la conjetura de Goldbach de Claudio Meller en el blog Números y algo más.

Triángulos geométricos

Un triángulo geométrico es un triángulo de lados enteros, representados por la terna (a,b,c) tal que a ≤ b ≤ c y están en progresión geométrica, es decir, b^2 = a*c. Por ejemplo, un triángulo de lados a = 144, b = 156 y c = 169.

Definir la función

tal que (numeroTG n) es el número de triángulos geométricos de perímetro menor o igual que n. Por ejemplo

Nota: Los triángulos geométricos de perímetro menor o igual que 20 son

Se observa que (1,2,4) aunque cumple que 1+2+4 <= 20 y 2^2 = 1*4 no pertenece a la lista ya que 1+2 > 4 y, por tanto, no hay ningún triángulo cuyos lados midan 1, 2 y 4.

Soluciones

Referencia

El ejercicio está basado en el problema 370 del proyecto Euler.

Centro de gravedad de una lista

Se dice que una lista de números xs es equilibrada si existe una posición k tal que la suma de los elementos de xs en las posiciones menores que k es igual a la de los elementos de xs en las posiciones mayores que k. La posición k se llama el centro de gravedad de xs. Por ejemplo, la lista [1,3,4,5,-2,1] es equilibrada, y su centro de gravedad es 2, ya que la suma de [1,3] es igual a la de [5,-2,1]. En cambio, la lista [1,6,4,5,-2,1] no tiene centro de gravedad.

Definir la función

tal que (centro xs) es justo el centro e gravedad de xs, si la lista xs es equilibrada y Nothing en caso contrario. Por ejemplo,

Soluciones

Cadenas de divisores

Una cadena de divisores de un número n es una lista donde cada elemento es un divisor de su siguiente elemento en la lista. Por ejemplo, las cadenas de divisores de 12 son [2,4,12], [2,6,12], [2,12], [3,6,12], [3,12], [4,12], [6,12] y [12].

Definir la función

tal que (cadenasDivisores n) es la lista de las cadenas de divisores de n. Por ejemplo,

Soluciones

Referencias

Mínimo número de cambios para igualar una lista

Definir la función

tal que (nMinimoCambios xs) es el menor número de elementos de xs que hay que cambiar para que todos sean iguales. Por ejemplo,

En el primer ejemplo, los elementos que hay que cambiar son 5, 7, 9 y 6.

Soluciones

Conflictos de horarios

Los horarios de los cursos se pueden representar mediante matrices donde las filas indican los curso, las columnas las horas de clase y el valor correspondiente al curso i y la hora j es verdadero indica que i tiene clase a la hora j.

En Haskell, podemos usar la matrices de la librería Data.Matrix y definir el tipo de los horarios por

Un ejemplo de horario es

en el que el 1º curso tiene clase a la 1ª y 2ª hora, el 2º a la 2ª y a la 3ª y el 3º a la 3ª y a la 4ª.

Definir la función

tal que (cursosConflictivos h is) se verifica para si los cursos de la lista is hay alguna hora en la que más de uno tiene clase a dicha hora. Por ejemplo,

Soluciones

Números como sumas de primos consecutivos

En el artículo Integers as a sum of consecutive primes in 2,3,4,.. ways se presentan números que se pueden escribir como sumas de primos consecutivos de varias formas. Por ejemplo, el 41 se puede escribir de dos formas distintas

el 240 se puede escribir de tres formas

y el 311 se puede escribir de 4 formas

Definir la función

tal que (sumas x) es la lista de las formas de escribir x como suma
de dos o más números primos consecutivos. Por ejemplo,

Soluciones

Primos permutables

Un primo permutable es un número primo tal que todos los números obtenidos permutando sus cifras son primos. Por ejemplo, 337 es un primo permutable ya que 337, 373 y 733 son primos.

Definir las funciones

tales que

  • (esPrimoPermutable x) se verifica si x es un primo permutable. Por ejemplo,

  • primosPermutables es la lista de los primos permutables. Por ejemplo,

Soluciones

Referencias

Representación decimal de números racionales

Los números decimales se representan por ternas, donde el primer elemento es la parte entera, el segundo es el anteperíodo y el tercero es el período. Por ejemplo,

Su tipo es

Los números racionales se representan por un par de enteros, donde el primer elemento es el numerador y el segundo el denominador. Por ejemplo, el número 2/3 se representa por (2,3). Su tipo es

Definir las funciones

tales que

  • (decimal r) es la representación decimal del número racional r. Por ejemplo,

  • (racional d) es el número racional cuya representación decimal es d. Por ejemplo,

Con la función decimal se puede calcular los períodos de los números racionales. Por ejemplo,

Comprobar con QuickCheck si las funciones decimal y racional son inversas.

Soluciones

Máxima suma de elementos consecutivos

Definir la función

tal que (sumaMaxima xs) es el valor máximo de la suma de elementos consecutivos de la lista xs. Por ejemplo,

Comprobar con QuickCheck que

Soluciones

Paridad del número de divisores

Definir la función

tal que (nDivisoresPar n) se verifica si n tiene un número par de divisores. Por ejemplo,

Soluciones

Solución en Maxima

Máxima longitud de las sublistas comunes

Las sublistas comunes de «1325» y «36572» son «», «3»,»32″, «35», «2» y «5». El máximo de sus longitudes es 2.

Definir la función

tal que (maximo xs ys) es el máximo de las longitudes de las sublistas comunes de xs e ys. Por ejemplo,

Soluciones

Número de islas rectangulares de una matriz

En este problema se consideran matrices cuyos elementos son 0 y 1. Los valores 1 aparecen en forma de islas rectangulares separadas por 0 de forma que como máximo las islas son diagonalmente adyacentes. Por ejemplo,

Definir la función

tal que (numeroDeIslas p) es el número de islas de la matriz p. Por ejemplo,

Soluciones

Diagonales de matrices como listas

Las matrices se pueden representar como listas de listas de la misma longitud, donde cada uno de sus elementos representa una fila de la matriz.

Definir la función

tal que (diagonal xss) es la diagonal de la matriz xss. Por ejemplo,

Soluciones

Solución con Maxima

Ordenación por frecuencia

Definir la función

tal que (ordPorFrecuencia xs) es la lista obtenidas ordenando los elementos de xs por su frecuencia, de los que aparecen menos a los que aparecen más. Por ejemplo,

Soluciones

Cambios de signo

En una lista xs se produce un cambio de signo por cada elemento x de la lista junto el primero de los elementos de xs con signo opuesto al de x. Por ejemplo,en la lista [6,5,-4,0,-2,-7,0,-8,-1,4] hay 2 cambios de signo (entre (5,-4) y (-1,4)) y en la lista [6,5,-4,0, 2,-7,0,-8,-1,4] hay 4 cambios de signo (entre (5,-4), (-4,2), (2,-7) y(-1,4)).

Definir la función

tal que (nCambios xs) es el número de cambios de signos de la lista xs. Por ejemplo,

Soluciones

Inserciones por posición

Definir la función

tal que (inserta xs yss) es la lista obtenida insertando

  • el primer elemento de xs como primero en la primera lista de yss,
  • el segundo elemento de xs como segundo en la segunda lista de yss (si la segunda lista de yss tiene al menos un elemento),
  • el tercer elemento de xs como tercero en la tercera lista de yss (si la tercera lista de yss tiene al menos dos elementos),

y así sucesivamente. Por ejemplo,

Nota: Este ejercicio es parte del examen del grupo 2 del 4 de diciembre.

Soluciones