Representación de Zeckendorf

Los primeros números de Fibonacci son

tales que los dos primeros son iguales a 1 y los siguientes se obtienen sumando los dos anteriores.

El teorema de Zeckendorf establece que todo entero positivo n se puede representar, de manera única, como la suma de números de Fibonacci no consecutivos decrecientes. Dicha suma se llama la representación de Zeckendorf de n. Por ejemplo, la representación de Zeckendorf de 100 es

Hay otras formas de representar 100 como sumas de números de Fibonacci; por ejemplo,

pero no son representaciones de Zeckendorf porque 1 y 2 son números de Fibonacci consecutivos, al igual que 34 y 55.

Definir la función

tal que (zeckendorf n) es la representación de Zeckendorf de n. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Separación por posición

Definir la función

tal que (particion xs) es el par cuya primera componente son los elementos de xs en posiciones pares y su segunda componente son los restantes elementos. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Hojas con caminos no decrecientes

Los árboles se pueden representar mediante el siguiente tipo de datos

Por ejemplo, los árboles

se representan por

Definir la función

tal que (hojasEnNoDecreciente a) es el conjunto de las hojas de a que se encuentran en alguna rama no decreciente. Por ejemplo,

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

La conjetura de Gilbreath

Partiendo de los 5 primeros números primos y calculando el valor absoluto de la diferencia de cada dos números consecutivos hasta quedarse con un único número se obtiene la siguiente tabla:

Se observa que todas las filas, salvo la inicial, comienzan con el número 1.

Repitiendo el proceso pero empezando con los 8 primeros números primos se obtiene la siguiente tabla:

Se observa que, de nuevo, todas las filas, salvo la inicial, comienza con el número 1.

La conjetura de Gilbreath afirma que si escribimos la sucesión de números primos completa y después construimos las correspondientes sucesiones formadas por el valor absoluto de la resta de cada pareja de números consecutivos, entonces todas esas filas que obtenemos comienzan siempre por 1.

El objetivo de este ejercicio es comprobar experimentalmente dicha conjetura.

Para la representación, usaremos la simétrica de la que hemos comentado anteriormente; es decir,

en la que la primera columna son los números primos y el elemento de la fila i y columna j (con i, j > 1) es el valor absoluto de la diferencia de los elementos (i,j-1) e (i-1,j-1).

Definir las siguientes funciones

tales que

  • (siguiente x ys) es la línea siguiente de la ys que empieza por x en la tabla de Gilbreath; es decir, si ys es [y1,y2,…,yn], entonces (siguiente x ys) es [x,|y1-x|,|y2-|y1-x||,…]. Por ejemplo,

  • triangulo es el triángulo de Gilbreath. Por ejemplo,

  • (conjeturaGilbreath n) se verifica si se cumple la conjetura de Gilbreath para los n primeros números primos; es decir, en el triángulo de Gilbreath cuya primera columna son los n primeros números primos, todas las filas a partir de la segunda terminan en 1. Por ejemplo,

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Pensamiento

«La simplicidad es la última sofisticación.»

Leonardo da Vinci.

Triángulo de Bell

El triágulo de Bell es el triángulo numérico, cuya primera fila es [1] y en cada fila, el primer elemento es el último de la fila anterior y el elemento en la posición j se obtiene sumando el elemento anterior de su misma fila y de la fila anterior. Sus primeras filas son

Definir la función

tal que trianguloDeBell es la lista con las filas de dicho triángulo. Por ejemplo

Comprobar con QuickCheck que los números que aparecen en la primera columna del triángulo coinciden con los números de Bell; es decir, el primer elemento de la n-ésima fila es el n-ésimo número de Bell.

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang=»haskell»> y otra con </pre>

Pensamiento

«La ciencia es lo que entendemos lo suficientemente bien como para explicarle a una computadora. El arte es todo lo demás.»

Donald Knuth.

Mayor divisor primo

Los divisores primos de 13195 son 5, 7, 13 y 29. Por tanto, el mayor divisor primo de 13195 es 29.

Definir la función

tal que (mayorDivisorPrimo n) es el mayor divisor primo de n. Por ejemplo,

Nota: Este ejercicio está basado en el problema 3 del Proyecto Euler

Soluciones

Pensamiento

«Un programa de ordenador es una demostración.» ~ Igor Rivin

Hojas con caminos no decrecientes

Los árboles se pueden representar mediante el siguiente tipo de datos

Por ejemplo, los árboles

se representan por

Definir la función

tal que (hojasEnNoDecreciente a) es el conjunto de las hojas de a que se encuentran en alguna rama no decreciente. Por ejemplo,

Soluciones

Pensamiento

Para dialogar,
preguntad, primero;
después … escuchad.

Antonio Machado

Mayor exponente

Definir las funciones

tales que

  • (mayorExponente n) es el mayor número b para el que existe un a tal que n = a^b. Se supone que n > 1. Por ejemplo,

  • (graficaMayorExponente n) dibuja la gráfica de los mayores exponentes de los números entre 2 y n. Por ejemplo, (graficaMayorExponente 50) dibuja

Soluciones

Pensamiento

Mirando mi calavera
un nuevo Hamlet dirá:
He aquí un lindo fósil de una
careta de carnaval.

Antonio Machado

Triángulo de Pascal binario

Los triángulos binarios de Pascal se formas a partir de una lista de ceros y unos usando las reglas del triángulo de Pascal, donde cada uno de los números es suma módulo dos de los dos situados en diagonal por encima suyo. Por ejemplo, los triángulos binarios de Pascal correspondientes a [1,0,1,1,1] y [1,0,1,1,0] son

Sus finales, desde el extremo inferior al extremos superior derecho, son [0,1,0,0,1] y [1,0,1,1,0], respectivamente.

Una lista es Pascal capicúa si es igual a los finales de su triángulo binario de Pascal. Por ejemplo, [1,0,1,1,0] es Pascal capicúa.

Definir las funciones

tales que

  • (trianguloPascalBinario xs) es el triágulo binario de Pascal correspondiente a la lista xs. Por ejemplo,

  • (pascalCapicuas n) es la lista de listas de Pascal capicúas de n elementos. Por ejemplo,

  • (nPascalCapicuas n) es el número de listas de Pascal capicúas de n elementos. Por ejemplo,

Soluciones

Pensamiento

La envidia de la virtud
hizo a Caín criminal.
¡Gloria a Caín! Hoy el vicio
es lo que se envidia más.

Antonio Machado

Representación de conjuntos mediante intervalos

Un conjunto de números enteros se pueden representar mediante una lista ordenada de intervalos tales que la diferencia entre el menor elemento de un intervalo y el mayor elemento de su intervalo anterior es mayor que uno.

Por ejemplo, el conjunto {2, 7, 4, 3, 9, 6} se puede representar mediante la lista de intervalos [(2,4),(6,7),(9,9)] de forma que en el primer intervalo se agrupan los números 2, 3 y 4; en el segundo, los números 6 y 7 y el tercero, el número 9.

Definir la función

tal que (intervalos xs) es lista ordenada de intervalos que representa
al conjunto xs. Por ejemplo,

Soluciones

Pensamiento

Cuando el saber se especializa, crece el volumen total de la cultura. Esta es la ilusión y el consuelo de los especialistas. ¡Lo que sabemos entre todos! ¡Oh, eso es lo que no sabe nadie!

Antonio Machado

Intercambio de la primera y última columna de una matriz

Las matrices se pueden representar mediante listas de listas. Por ejemplo, la matriz

se puede representar por la lista

Definir la función

tal que (intercambia xss) es la matriz obtenida intercambiando la primera y la última columna de xss. Por ejemplo,

Soluciones

Pensamiento

«¡Que difícil es,
cuando todo baja
no bajar también!»

Antonio Machado

Números colinas

Se dice que un número natural n es una colina si su primer dígito es igual a su último dígito, los primeros dígitos son estrictamente creciente hasta llegar al máximo, el máximo se puede repetir y los dígitos desde el máximo al final son estrictamente decrecientes.

Definir la función

tal que (esColina n) se verifica si n es un número colina. Por ejemplo,

Soluciones

Referencia

Basado en el problema Is this number a hill number? de Code Golf

Pensamiento

Si me tengo que morir
poco me importa aprender.
Y si no puedo saber,
poco me importa vivir.

Antonio Machado

Elemento solitario

Definir la función

tal que (solitario xs) es el único elemento que ocurre una vez en la lista xs (se supone que la lista xs tiene al menos 3 elementos y todos son iguales menos uno que es el solitario). Por ejemplo,

Soluciones

Pensamiento

Sube y sube, pero ten
cuidado Nefelibata,
que entre las nubes también,
se puede meter la pata.

Antonio Machado

Alturas primas

Se considera una enumeración de los números primos:

Dado un entero x > 1, su altura prima es el mayor i tal que el primo p(i) aparece en la factorización de x en números primos. Por ejemplo, la altura prima de 3500 tiene longitud 4, pues 3500=2^2×5^3×7^1 y la de 34 tiene es 7, pues 34 = 2×17. Además, se define la altura prima de 1 como 0.

Definir las funciones

tales que

  • (alturaPrima x) es la altura prima de x. Por ejemplo,

  • (alturasPrimas n) es la lista de las altura prima de los primeros n números enteros positivos. Por ejemplo,

  • (graficaAlturaPrima n) dibuja las alturas primas de los números entre 2 y n. Por ejemplo, (graficaAlturaPrima 500) dibuja
    Alturas_primas

Soluciones

La conjetura de Gilbreath

Partiendo de los 5 primeros números primos y calculando el valor absoluto de la diferencia de cada dos números consecutivos hasta quedarse con un único número se obtiene la siguiente tabla:

Se observa que todas las filas, salvo la inicial, comienzan con el número 1.

Repitiendo el proceso pero empezando con los 8 primeros números primos se obtiene la siguiente tabla:

Se observa que, de nuevo, todas las filas, salvo la inicial, comienza con el número 1.

La conjetura de Gilbreath afirma que si escribimos la sucesión de números primos completa y después construimos las correspondientes sucesiones formadas por el valor absoluto de la resta de cada pareja de números consecutivos, entonces todas esas filas que obtenemos comienzan siempre por 1.

El objetivo de este ejercicio es comprobar experimentalmente dicha conjetura.

Para la representación, usaremos la simétrica de la que hemos comentado anteriormente; es decir,

en la que la primera columna son los números primos y el elemento de la fila i y columna j (con i, j > 1) es el valor absoluto de la diferencia de los elementos (i,j-1) e (i-1,j-1).

Definir las siguientes funciones

tales que

  • (siguiente x ys) es la línea siguiente de la ys que empieza por x en la tabla de Gilbreath; es decir, si ys es [y1,y2,…,yn], entonces (siguiente x ys) es [x,|y1-x|,|y2-|y1-x||,…] Por ejemplo,

  • triangulo es el triángulo de Gilbreath. Por ejemplo,

  • (conjeturaGilbreath n) se verifica si se cumple la conjetura de Gilbreath para los n primeros números primos; es decir, en el triángulo de Gilbreath cuya primera columna son los n primeros números primos, todas las filas a partir de la segunda terminan en 1. Por ejemplo,

Soluciones

Suma de las sumas de los cuadrados de los divisores

La suma de las sumas de los cuadrados de los divisores de los 6 primeros números enteros positivos es

Definir la función

tal que (sumaSumasCuadradosDivisores n) es la suma de las sumas de los cuadrados de los divisores de los n primeros números enteros positivos. Por ejemplo,

Soluciones

Terna pitagórica a partir de un lado

Una terna pitagórica con primer lado x es una terna (x,y,z) tal que x^2 + y^2 = z^2. Por ejemplo, las ternas pitagóricas con primer lado 16 son (16,12,20), (16,30,34) y (16,63,65).

Definir las funciones

tales que

  • (ternasPitgoricas x) es la lista de las ternas pitagóricas con primer lado x. Por ejemplo,

  • (mayorTernaPitagorica x) es la mayor de las ternas pitagóricas con primer lado x. Por ejemplo,

  • (graficaMayorHipotenusa n) dibuja la gráfica de las sucesión de las mayores hipotenusas de las ternas pitagóricas con primer lado x, para x entre 3 y n. Por ejemplo, (graficaMayorHipotenusa 100) dibuja
    Terna_pitagorica_a_partir_de_un_lado

Soluciones

Rotaciones divisibles por 4

Las rotaciones de 928160 son 928160, 281609, 816092, 160928, 609281 y 92816. De las cuales, las divisibles por 4 son 928160, 816092, 160928 y 92816.

Definir la función

tal que (nRotacionesDivisibles n) es el número de rotaciones del número n divisibles por 4. Por ejemplo,

Soluciones