Menu Close

Etiqueta: group

Reparto de escaños por la ley d’Hont

El sistema D’Hondt es una fórmula creada por Victor d’Hondt, que permite obtener el número de cargos electos asignados a las candidaturas, en proporción a los votos conseguidos.

Tras el recuento de los votos, se calcula una serie de divisores para cada partido. La fórmula de los divisores es V/N, donde V representa el número total de votos recibidos por el partido, y N representa cada uno de los números enteros desde 1 hasta el número de cargos electos de la circunscripción objeto de escrutinio. Una vez realizadas las divisiones de los votos de cada partido por cada uno de los divisores desde 1 hasta N, la asignación de cargos electos se hace ordenando los cocientes de las divisiones de mayor a menor y asignando a cada uno un escaño hasta que éstos se agoten

Definir la función

   reparto :: Int -> [Int] -> [(Int,Int)]

tal que (reparto n vs) es la lista de los pares formados por los números de los partidos y el número de escaño que les corresponden al repartir n escaños en función de la lista de sus votos. Por ejemplo,

   ghci> reparto 7 [340000,280000,160000,60000,15000]
   [(1,3),(2,3),(3,1)]
   ghci> reparto 21 [391000,311000,184000,73000,27000,12000,2000]
   [(1,9),(2,7),(3,4),(4,1)]

es decir, en el primer ejemplo,

  • al 1º partido (que obtuvo 340000 votos) le corresponden 3 escaños,
  • al 2º partido (que obtuvo 280000 votos) le corresponden 3 escaños,
  • al 3º partido (que obtuvo 160000 votos) le corresponden 1 escaño.

Soluciones

import Data.List (sort, group)
 
-- Para los ejemplos que siguen, se usará la siguiente ditribución de
-- votos entre 5 partidos.
ejVotos :: [Int]
ejVotos = [340000,280000,160000,60000,15000]
 
-- 1ª solución
-- ===========
 
reparto :: Int -> [Int] -> [(Int,Int)]
reparto n vs = 
  [(x,1 + length xs) | (x:xs) <- group (sort (repartoAux n vs))] 
 
-- (repartoAux n vs) es el número de los partidos, cuyos votos son vs, que
-- obtienen los n escaños. Por ejemplo,
--    ghci> repartoAux 7 ejVotos
--    [1,2,1,3,2,1,2]
repartoAux :: Int -> [Int] -> [Int]
repartoAux n vs = map snd (repartoAux' n vs)
 
-- (repartoAux' n vs) es la lista formada por los n restos mayores
-- correspondientes a la lista de votos vs. Por ejemplo,
--    ghci> repartoAux' 7 ejVotos
--    [(340000,1),(280000,2),(170000,1),(160000,3),(140000,2),(113333,1),
--     (93333,2)]
repartoAux' :: Int -> [Int] -> [(Int,Int)]
repartoAux' n vs = 
  take n (reverse (sort (concatMap (restos n) (votosPartidos vs))))
 
-- (votosPartidos vs) es la lista con los pares formados por los votos y
-- el número de cada partido. Por ejemplo, 
--    ghci> votosPartidos ejVotos
--    [(340000,1),(280000,2),(160000,3),(60000,4),(15000,5)]
votosPartidos :: [Int] -> [(Int,Int)]
votosPartidos vs = zip vs [1..]
 
-- (restos n (x,i)) es la lista obtenidas dividiendo n entre 1, 2,..., n.
-- Por ejemplo, 
--    ghci> restos 5 (340000,1)
--    [(340000,1),(170000,1),(113333,1),(85000,1),(68000,1)]
restos :: Int -> (Int,Int) -> [(Int,Int)]
restos n (x,i) = [(x `div` k,i) | k <- [1..n]]
 
-- 2ª solución
-- ===========
 
reparto2 :: Int -> [Int] -> [(Int,Int)]
reparto2 n xs = 
  ( map (\x -> (head x, length x))  
  . group  
  . sort  
  . map snd  
  . take n  
  . reverse  
  . sort
  ) [(x `div` i, p) | (x,p) <- zip xs [1..], i <- [1..n]]

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Huecos de Aquiles

Un número de Aquiles es un número natural n que es potente (es decir, si p es un divisor primo de n, entonces p² también lo es) y no es una potencia perfecta (es decir, no existen números naturales m y k tales que n es igual a m^k). Por ejemplo,

  • 108 es un número de Aquiles proque es un número potente (ya que su factorización es 2^2 · 3^3, sus divisores primos son 2 and 3 y sus cuadrados (2^2 = 4 y 3^2 = 9) son divisores de 108. Además, 108 no es una potencia perfecta.
  • 360 no es un número de Aquiles ya que 5 es un divisor primo de 360, pero 5^2 = 15 no lo es.
  • 784 no es un número de Aquiles porque, aunque es potente, es una potencia perfecta ya que 784 = 28^2.

Los primeros números de Aquiles son

   72, 108, 200, 288, 392, 432, 500, 648, 675, 800, 864, 968, 972, ...

Definir las funciones

   esAquiles              :: Integer -> Bool
   huecosDeAquiles        :: [Integer]
   graficaHuecosDeAquiles :: Int -> IO ()

tales que

  • (esAquiles x) se verifica si x es un número de Aquiles. Por ejemplo,
     esAquiles 108         ==  True
     esAquiles 360         ==  False
     esAquiles 784         ==  False
     esAquiles 5425069447  ==  True
     esAquiles 5425069448  ==  True
  • huecosDeAquiles es la sucesión de la diferencias entre los números de Aquiles consecutivos. Por ejemplo,
     λ> take 15 huecosDeAquiles
     [36,92,88,104,40,68,148,27,125,64,104,4,153,27,171]
  • (graficaHuecosDeAquiles n) dibuja la gráfica de los n primeros huecos de Aquiles. Por ejemplo, (graficaHuecosDeAquiles 160) dibuja

Soluciones

import Data.List (group)
import Data.Numbers.Primes (primeFactors)
import Graphics.Gnuplot.Simple
 
-- Definición de esAquiles
-- =======================
 
esAquiles :: Integer -> Bool
esAquiles x = esPotente x && noEsPotenciaPerfecta x
 
-- (esPotente x) se verifica si x es potente. Por ejemplo,
--    esPotente 108  ==  True
--    esPotente 360  ==  False
--    esPotente 784  ==  True
esPotente :: Integer -> Bool
esPotente x = all (>1) (exponentes x)
 
-- (exponentes x) es la lista de los exponentes en la factorización de
-- x. Por ejemplo,
--    exponentes 108  ==  [2,3]
--    exponentes 360  ==  [3,2,1]
--    exponentes 784  ==  [4,2]
exponentes :: Integer -> [Int]
exponentes x = map length (group (primeFactors x))
 
-- (noEsPotenciaPerfecta x) se verifica si x no es una potencia
-- perfecta. Por ejemplo,
--    noEsPotenciaPerfecta 108  ==  True
--    noEsPotenciaPerfecta 360  ==  True
--    noEsPotenciaPerfecta 784  ==  False
noEsPotenciaPerfecta :: Integer -> Bool
noEsPotenciaPerfecta x = foldl1 gcd (exponentes x) == 1 
 
-- Definición de huecosDeAquiles
-- =============================
 
huecosDeAquiles :: [Integer]
huecosDeAquiles = zipWith (-) (tail aquiles) aquiles
 
-- aquiles es la sucesión de los números de Aquiles. Por ejemplo, 
--    λ> take 15 aquiles
--    [72,108,200,288,392,432,500,648,675,800,864,968,972,1125,1152]
aquiles :: [Integer]
aquiles = filter esAquiles [2..]
 
-- Definición de graficaHuecosDeAquiles
-- ====================================
 
graficaHuecosDeAquiles :: Int -> IO ()
graficaHuecosDeAquiles n =
  plotList [ Key Nothing
           , PNG "Huecos_de_Aquiles.png"
           ]
           (take n huecosDeAquiles)

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Término ausente en una progresión aritmética

Una progresión aritmética es una sucesión de números tales que la diferencia de dos términos sucesivos cualesquiera de la sucesión es constante.

Definir la función

   ausente :: Integral a => [a] -> a

tal que (ausente xs) es el único término ausente de la progresión aritmética xs. Por ejemplo,

   ausente [3,7,9,11]               ==  5
   ausente [3,5,9,11]               ==  7
   ausente [3,5,7,11]               ==  9
   ausente ([1..9]++[11..])         ==  10
   ausente ([1..10^6] ++ [2+10^6])  ==  1000001

Nota. Se supone que la lista tiene al menos 3 elementos, que puede ser infinita y que sólo hay un término de la progresión aritmética que no está en la lista.

Soluciones

import Data.List (group, genericLength)
 
-- 1ª solución
ausente :: Integral a => [a] -> a
ausente (x1:xs@(x2:x3:_))
  | d1 == d2     = ausente xs
  | d1 == 2 * d2 = x1 + d2
  | d2 == 2 * d1 = x2 + d1
  where d1 = x2 - x1
        d2 = x3 - x2          
 
-- 2ª solución
ausente2 :: Integral a => [a] -> a
ausente2 s@(x1:x2:x3:xs) 
  | x1 + x3 /= 2 * x2 = x1 + (x3 - x2)
  | otherwise         = head [a | (a,b) <- zip [x1,x2..] s
                                , a /= b]
 
-- 3ª solución
ausente3 :: Integral a => [a] -> a
ausente3  xs@(x1:x2:_) 
  | null us   = x1 + v
  | otherwise = x2 + u * genericLength (u:us) 
  where ((u:us):(v:_):_) = group (zipWith (-) (tail xs) xs)
 
-- Comparación de eficiencia
--    ghci> let n = 10^6 in ausente1 ([1..n] ++ [n+2])
--    1000001
--    (3.53 secs, 634729880 bytes)
--    
--    ghci> let n = 10^6 in ausente2 ([1..n] ++ [n+2])
--    1000001
--    (0.86 secs, 346910784 bytes)
--    
--    ghci> let n = 10^6 in ausente3 ([1..n] ++ [n+2])
--    1000001
--    (1.22 secs, 501521888 bytes)
--    
--    ghci> let n = 10^7 in ausente2 ([1..n] ++ [n+2])
--    10000001
--    (8.68 secs, 3444142568 bytes)
--    
--    ghci> let n = 10^7 in ausente3 ([1..n] ++ [n+2])
--    10000001
--    (12.59 secs, 4975932088 bytes)

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Cálculo de dígitos de pi y su distribución

Se pueden generar los dígitos de Pi, como se explica en el artículo Unbounded spigot algorithms for the digits of pi c0on la función digitosPi definida por

   digitosPi :: [Integer]
   digitosPi = g(1,0,1,1,3,3) where
     g (q,r,t,k,n,l) = 
       if 4*q+r-t < n*t
       then n : g (10*q, 10*(r-n*t), t, k, div (10*(3*q+r)) t - 10*n, l)
       else g (q*k, (2*q+r)*l, t*l, k+1, div (q*(7*k+2)+r*l) (t*l), l+2)

Por ejemplo,

   λ> take 25 digitosPi
   [3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3,2,3,8,4,6,2,6,4,3]

La distribución de los primeros 25 dígitos de pi es [0,2,3,5,3,3,3,1,2,3] ya que el 0 no aparece, el 1 ocurre 2 veces, el 3 ocurre 3 veces, el 4 ocurre 5 veces, …

Usando digitosPi, definir las siguientes funciones

   distribucionDigitosPi :: Int -> [Int]
   frecuenciaDigitosPi   :: Int -> [Double]

tales que

  • (distribucionDigitosPi n) es la distribución de los n primeros dígitos de pi. Por ejemplo,
     λ> distribucionDigitosPi 10
     [0,2,1,2,1,2,1,0,0,1]
     λ> distribucionDigitosPi 100
     [8,8,12,12,10,8,9,8,12,13]
     λ> distribucionDigitosPi 1000
     [93,116,103,103,93,97,94,95,101,105]
     λ> distribucionDigitosPi 5000
     [466,531,496,460,508,525,513,488,492,521]
  • (frecuenciaDigitosPi n) es la frecuencia de los n primeros dígitos de pi. Por ejemplo,
   λ> frecuenciaDigitosPi 10
   [0.0,20.0,10.0,20.0,10.0,20.0,10.0,0.0,0.0,10.0]
   λ> frecuenciaDigitosPi 100
   [8.0,8.0,12.0,12.0,10.0,8.0,9.0,8.0,12.0,13.0]
   λ> frecuenciaDigitosPi 1000
   [9.3,11.6,10.3,10.3,9.3,9.7,9.4,9.5,10.1,10.5]
   λ> frecuenciaDigitosPi 5000
   [9.32,10.62,9.92,9.2,10.16,10.5,10.26,9.76,9.84,10.42]

Soluciones

import Data.Array
import Data.List (group, sort)
 
digitosPi :: [Integer]
digitosPi = g(1,0,1,1,3,3) where
  g (q,r,t,k,n,l) = 
    if 4*q+r-t < n*t
    then n : g (10*q, 10*(r-n*t), t, k, div (10*(3*q+r)) t - 10*n, l)
    else g (q*k, (2*q+r)*l, t*l, k+1, div (q*(7*k+2)+r*l) (t*l), l+2)
 
-- 1ª definición
-- =============
 
distribucionDigitosPi :: Int -> [Int]
distribucionDigitosPi n =
  elems (accumArray (+) 0 (0,9) [ (i,1)
                                | i <- take n digitosPi]) 
 
frecuenciaDigitosPi :: Int -> [Double]
frecuenciaDigitosPi n =
  [100 * (fromIntegral x / m) | x <- distribucionDigitosPi n]
  where m = fromIntegral n
 
-- 2ª definición
-- =============
 
distribucionDigitosPi2 :: Int -> [Int]
distribucionDigitosPi2 n =
  [length xs - 1 | xs <- group (sort (take n digitosPi ++ [0..9]))]
 
frecuenciaDigitosPi2 :: Int -> [Double]
frecuenciaDigitosPi2 n =
  [100 * (fromIntegral x / m) | x <- distribucionDigitosPi2 n]
  where m = fromIntegral n
 
-- Comparación de eficiencia
-- =========================
 
--    λ> last (take 5000 digitosPi)
--    2
--    (4.47 secs, 3,927,848,448 bytes)
--    λ> frecuenciaDigitosPi 5000
--    [9.32,10.62,9.92,9.2,10.16,10.5,10.26,9.76,9.84,10.42]
--    (0.01 secs, 0 bytes)
--    λ> frecuenciaDigitosPi2 5000
--    [9.32,10.62,9.92,9.2,10.16,10.5,10.26,9.76,9.84,10.42]
--    (0.02 secs, 0 bytes)

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Repeticiones consecutivas

Se dice que una palabra tiene una repetición en una frase si es igual a una, o más, de las palabras consecutivas sin distinguir mayúsculas de minúsculas.

Definir la función

   nRepeticionesConsecutivas :: String ->Int

tal que (nRepeticionesConsecutivas cs) es el número de repeticiones de palabras consecutivas de la cadena cs. Por ejemplo,

   nRepeticionesConsecutivas "oso rana"                    == 0      
   nRepeticionesConsecutivas "oso rana oso"                == 0
   nRepeticionesConsecutivas "oso oSo rana"                == 1
   nRepeticionesConsecutivas "oso oso oso rana"            == 1
   nRepeticionesConsecutivas "coronavirus virus oso rana"  == 0
   nRepeticionesConsecutivas "virus     virus oso rana"    == 1
   nRepeticionesConsecutivas "virus oso virus oso rana"    == 0
   nRepeticionesConsecutivas "oso oso oso oso oso oso"     == 1
   nRepeticionesConsecutivas "oso oso oso oso rana rana"   == 2
   nRepeticionesConsecutivas "rana rana oso oso rana rana" == 3

Soluciones

import Data.List (group)
import Data.Char (toUpper)
 
-- 1ª solución
nRepeticionesConsecutivas :: String ->Int
nRepeticionesConsecutivas = aux . words . map toUpper 
  where aux (x:y:zs) | x == y    = 1 + aux (dropWhile (== x) zs)
                     | otherwise = aux (y:zs)
        aux _ = 0
 
-- 2ª solución
nRepeticionesConsecutivas2 :: String ->Int
nRepeticionesConsecutivas2 cs =
  length [xs | xs <- group (words (map toUpper cs)), length xs > 1]
 
-- 3ª solución
nRepeticionesConsecutivas3 :: String ->Int
nRepeticionesConsecutivas3 =
  length . filter ((>1) . length) . group . words . map toUpper

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Pensamiento

“En el campo de la computación, el momento de la verdad es la ejecución de un programa; todo lo demás es profecía.”

Herbert A. Simon.