Menu Close

Etiqueta: genericLength

Sucesión de sumas de dos números abundantes

Un número n es abundante si la suma de los divisores propios de n es mayor que n. El primer número abundante es el 12 (cuyos divisores propios son 1, 2, 3, 4 y 6 cuya suma es 16). Por tanto, el menor número que es la suma de dos números abundantes es el 24.

Definir la sucesión

   sumasDeDosAbundantes :: [Integer]

cuyos elementos son los números que se pueden escribir como suma de dos números abundantes. Por ejemplo,

   take 10 sumasDeDosAbundantes  ==  [24,30,32,36,38,40,42,44,48,50]

Soluciones

import Data.List (genericLength, group)
import Data.Numbers.Primes (primeFactors)
import Test.QuickCheck
 
-- 1ª solución
-- ===========
 
sumasDeDosAbundantes1 :: [Integer]
sumasDeDosAbundantes1 = [n | n <- [1..], esSumaDeDosAbundantes n]
 
-- (esSumaDeDosAbundantes n) se verifica si n es suma de dos números
-- abundantes. Por ejemplo,
--    esSumaDeDosAbundantes 24           ==  True
--    any esSumaDeDosAbundantes [1..22]  ==  False
esSumaDeDosAbundantes :: Integer -> Bool
esSumaDeDosAbundantes n = (not . null) [x | x <- xs, n-x `elem` xs]
  where xs = takeWhile (<n) abundantes
 
-- abundantes es la lista de los números abundantes. Por ejemplo,
--    take 10 abundantes  ==  [12,18,20,24,30,36,40,42,48,54]
abundantes :: [Integer]
abundantes = [n | n <- [2..], abundante n]
 
-- (abundante n) se verifica si n es abundante. Por ejemplo,
--    abundante 12  ==  True
--    abundante 11  ==  False
abundante :: Integer -> Bool
abundante n = sum (divisores n) > n
 
-- (divisores n) es la lista de los divisores propios de n. Por ejemplo,
--    divisores 12  ==  [1,2,3,4,6]
divisores :: Integer -> [Integer]
divisores n = [x | x <- [1..n `div` 2], n `mod` x == 0]
 
-- 2ª solución
-- ===========
 
sumasDeDosAbundantes2 :: [Integer]
sumasDeDosAbundantes2 = filter esSumaDeDosAbundantes2 [1..]
 
esSumaDeDosAbundantes2 :: Integer -> Bool
esSumaDeDosAbundantes2 n = (not . null) [x | x <- xs, n-x `elem` xs]
  where xs = takeWhile (<n) abundantes2
 
abundantes2 :: [Integer]
abundantes2 = filter abundante2 [2..]
 
abundante2 :: Integer -> Bool
abundante2 n = sumaDivisores n > n
 
sumaDivisores :: Integer -> Integer
sumaDivisores x =
  product [(p^(e+1)-1) `div` (p-1) | (p,e) <- factorizacion x] - x
 
-- (factorizacion x) es la lista de las bases y exponentes de la
-- descomposición prima de x. Por ejemplo,
--    factorizacion 600  ==  [(2,3),(3,1),(5,2)]
factorizacion :: Integer -> [(Integer,Integer)]
factorizacion = map primeroYlongitud . group . primeFactors
 
-- (primeroYlongitud xs) es el par formado por el primer elemento de xs
-- y la longitud de xs. Por ejemplo,
--    primeroYlongitud [3,2,5,7] == (3,4)
primeroYlongitud :: [a] -> (a,Integer)
primeroYlongitud (x:xs) =
  (x, 1 + genericLength xs)
 
-- Comprobación de equivalencia
-- ============================
 
-- La propiedad es
prop_sumasDeDosAbundantes :: Positive Int -> Bool
prop_sumasDeDosAbundantes (Positive n) =
  sumasDeDosAbundantes1 !! n == sumasDeDosAbundantes2 !! n
 
-- La comprobación es
--    λ> quickCheck prop_sumasDeDosAbundantes
--    +++ OK, passed 100 tests.
 
-- Comparación de eficiencia
-- =========================
 
-- La comparación es
--    λ> sumasDeDosAbundantes1 !! (2*10^3)
--    2887
--    (2.54 secs, 516,685,168 bytes)
--    λ> sumasDeDosAbundantes2 !! (2*10^3)
--    2887
--    (1.43 secs, 141,606,136 bytes)

El código se encuentra en GitHub.

Suma de divisores

Definir la función

   sumaDivisores :: Integer -> Integer

tal que (sumaDivisores x) es la suma de los divisores de x. Por ejemplo,

   sumaDivisores 12  ==  28
   sumaDivisores 25  ==  31
   sumaDivisores (product [1..25])  ==  93383273455325195473152000
   length (show (sumaDivisores (product [1..30000])))  ==  121289
   maximum (map sumaDivisores [1..10^5])  ==  403200

Soluciones

import Data.List (genericLength, group, inits)
import Data.Numbers.Primes (primeFactors)
import Test.QuickCheck
 
-- 1ª solución
-- ===========
 
sumaDivisores1 :: Integer -> Integer
sumaDivisores1 = sum . divisores
 
-- (divisores x) es la lista de los divisores de x. Por ejemplo,
--    divisores 60  ==  [1,5,3,15,2,10,6,30,4,20,12,60]
divisores :: Integer -> [Integer]
divisores = map (product . concat)
          . productoCartesiano
          . map inits
          . group
          . primeFactors
 
-- (productoCartesiano xss) es el producto cartesiano de los conjuntos
-- xss. Por ejemplo,
--    λ> producto [[1,3],[2,5],[6,4]]
--    [[1,2,6],[1,2,4],[1,5,6],[1,5,4],[3,2,6],[3,2,4],[3,5,6],[3,5,4]]
productoCartesiano :: [[a]] -> [[a]]
productoCartesiano []       = [[]]
productoCartesiano (xs:xss) =
  [x:ys | x <- xs, ys <- productoCartesiano xss]
 
-- 2ª solución
-- ===========
 
sumaDivisores2 :: Integer -> Integer
sumaDivisores2 = sum
               . map (product . concat)
               . sequence
               . map inits
               . group
               . primeFactors
 
-- 3ª solución
-- ===========
 
-- Si la descomposición de x en factores primos es
--    x = p(1)^e(1) . p(2)^e(2) . .... . p(n)^e(n)
-- entonces la suma de los divisores de x es
--    p(1)^(e(1)+1) - 1     p(2)^(e(2)+1) - 1       p(n)^(e(2)+1) - 1
--   ------------------- . ------------------- ... -------------------
--        p(1)-1                p(2)-1                  p(n)-1
-- Ver la demostración en http://bit.ly/2zUXZPc
 
sumaDivisores3 :: Integer -> Integer
sumaDivisores3 x =
  product [(p^(e+1)-1) `div` (p-1) | (p,e) <- factorizacion x]
 
-- (factorizacion x) es la lista de las bases y exponentes de la
-- descomposición prima de x. Por ejemplo,
--    factorizacion 600  ==  [(2,3),(3,1),(5,2)]
factorizacion :: Integer -> [(Integer,Integer)]
factorizacion = map primeroYlongitud . group . primeFactors
 
-- (primeroYlongitud xs) es el par formado por el primer elemento de xs
-- y la longitud de xs. Por ejemplo,
--    primeroYlongitud [3,2,5,7] == (3,4)
primeroYlongitud :: [a] -> (a,Integer)
primeroYlongitud (x:xs) =
  (x, 1 + genericLength xs)
 
-- Comprobación de equivalencia
-- ============================
 
-- La propiedad es
prop_sumaDivisores :: Positive Integer -> Bool
prop_sumaDivisores (Positive x) =
  all (== sumaDivisores1 x)
      [ sumaDivisores2 x
      , sumaDivisores3 x
      ]
 
-- La comprobación es
--    λ> quickCheck prop_sumaDivisores
--    +++ OK, passed 100 tests.
 
-- Comparación de eficiencia
-- =========================
 
-- La comparación es
--   λ> sumaDivisores1 251888923423315469521109880000000
--   1471072204661054993275791673480320
--   (10.63 secs, 10,614,618,080 bytes)
--   λ> sumaDivisores2 251888923423315469521109880000000
--   1471072204661054993275791673480320
--   (2.51 secs, 5,719,399,056 bytes)
--   λ> sumaDivisores3 251888923423315469521109880000000
--   1471072204661054993275791673480320
--   (0.01 secs, 177,480 bytes)

El código se encuentra en GitHub.

Número de divisores

Definir la función

   numeroDivisores :: Integer -> Integer

tal que (numeroDivisores x) es el número de divisores de x. Por ejemplo,

   numeroDivisores 12  ==  6
   numeroDivisores 25  ==  3
   length (show (numeroDivisores (product [1..3*10^4])))  ==  1948

Soluciones

import Data.List (genericLength, group, inits)
import Data.Numbers.Primes (primeFactors)
import Test.QuickCheck
 
-- 1ª solución
-- ===========
 
numeroDivisores1 :: Integer -> Integer
numeroDivisores1 x =
  genericLength [y | y <- [1..x], x `mod` y == 0]
 
-- 2ª solución
-- ===========
 
numeroDivisores2 :: Integer -> Integer
numeroDivisores2 1 = 1
numeroDivisores2 x
  | esCuadrado x = 2 * genericLength [y | y <- [1..raizEntera x], x `mod` y == 0] - 1
  | otherwise    = 2 * genericLength [y | y <- [1..raizEntera x], x `mod` y == 0]
 
-- (raizEntera x) es el mayor número entero cuyo cuadrado es menor o
-- igual que x. Por ejemplo,
--    raizEntera 3  ==  1
--    raizEntera 4  ==  2
--    raizEntera 5  ==  2
--    raizEntera 8  ==  2
--    raizEntera 9  ==  3
raizEntera :: Integer -> Integer
raizEntera x = floor (sqrt (fromInteger x))
 
-- (esCuadrado x) se verifica si x es un cuadrado perfecto. Por ejemplo,
--    esCuadrado 9  ==  True
--    esCuadrado 7  ==  False
esCuadrado :: Integer -> Bool
esCuadrado x =
  x == (raizEntera x)^2
 
-- 3ª solución
-- ===========
 
numeroDivisores3 :: Integer -> Integer
numeroDivisores3 =
  genericLength . divisores
 
-- (divisores x) es la lista de los divisores de x. Por ejemplo,
--    divisores 12  ==  [1,3,2,6,4,12]
--    divisores 25  ==  [1,5,25]
divisores :: Integer -> [Integer]
divisores = map (product . concat)
          . productoCartesiano
          . map inits
          . group
          . primeFactors
 
-- (productoCartesiano xss) es el producto cartesiano de los conjuntos
-- xss. Por ejemplo,
--    λ> productoCartesiano [[1,3],[2,5],[6,4]]
--    [[1,2,6],[1,2,4],[1,5,6],[1,5,4],[3,2,6],[3,2,4],[3,5,6],[3,5,4]]
productoCartesiano :: [[a]] -> [[a]]
productoCartesiano []       = [[]]
productoCartesiano (xs:xss) =
  [x:ys | x <- xs, ys <- productoCartesiano xss]
 
-- 4ª solución
-- ===========
 
numeroDivisores4 :: Integer -> Integer
numeroDivisores4 = genericLength
                 . map (product . concat)
                 . sequence
                 . map inits
                 . group
                 . primeFactors
 
-- 5ª solución
-- ===========
 
numeroDivisores5 :: Integer -> Integer
numeroDivisores5 =
  product . map ((+1) . genericLength) . group . primeFactors
 
-- Comprobación de equivalencia
-- ============================
 
-- La propiedad es
prop_numeroDivisores :: Positive Integer -> Bool
prop_numeroDivisores (Positive x) =
  all (== numeroDivisores1 x)
      [ numeroDivisores2 x
      , numeroDivisores3 x
      , numeroDivisores4 x
      , numeroDivisores5 x]
 
-- La comprobación es
--    λ> quickCheck prop_numeroDivisores
--    +++ OK, passed 100 tests.
 
-- Comparación de eficiencia
-- =========================
 
-- La comparación es
--    λ> numeroDivisores1 (product [1..10])
--    270
--    (1.67 secs, 726,327,208 bytes)
--    λ> numeroDivisores2 (product [1..10])
--    270
--    (0.01 secs, 929,000 bytes)
--
--    λ> numeroDivisores2 (product [1..16])
--    5376
--    (2.10 secs, 915,864,664 bytes)
--    λ> numeroDivisores3 (product [1..16])
--    5376
--    (0.01 secs, 548,472 bytes)
--
--    λ> numeroDivisores3 (product [1..30])
--    2332800
--    (3.80 secs, 4,149,811,688 bytes)
--    λ> numeroDivisores4 (product [1..30])
--    2332800
--    (0.59 secs, 722,253,848 bytes)
--    λ> numeroDivisores5 (product [1..30])
--    2332800
--    (0.00 secs, 587,856 bytes)

El código se encuentra en GitHub.

Número como suma de sus dígitos

El número 23 se puede escribir de 4 formas como suma de sus dígitos

   2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 3
   2 + 2 + 2 + 2 + 2 + 2 + 2 + 3 + 3 + 3
   2 + 2 + 2 + 2 + 3 + 3 + 3 + 3 + 3
   2 + 3 + 3 + 3 + 3 + 3 + 3 + 3

La de menor número de sumando es la última, que tiene 8 sumandos.

Definir las funciones

   minimoSumandosDigitos        :: Integer -> Integer
   graficaMinimoSumandosDigitos :: Integer -> IO ()

tales que

  • (minimoSumandosDigitos n) es el menor número de dígitos de n cuya suma es n. Por ejemplo,
     minimoSumandosDigitos 23    ==  8
     minimoSumandosDigitos 232   ==  78
     minimoSumandosDigitos 2323  ==  775
     map minimoSumandosDigitos [10..20] == [10,11,6,5,5,3,6,5,4,3,10]
  • (graficaMinimoSumandosDigitos n) dibuja la gráfica de (minimoSumandosDigitos k) par los k primeros números naturales. Por ejemplo, (graficaMinimoSumandosDigitos 300) dibuja

Soluciones

import Test.QuickCheck
import Graphics.Gnuplot.Simple
import Data.List (nub, genericLength, sort)
import Data.Array (array, (!))
 
minimoSumandosDigitos :: Integer -> Integer
minimoSumandosDigitos n =
  minimoSumandos (digitos n) n
 
-- (digitos n) es el conjunto de los dígitos no nulos de n. Por ejemplo,
--    digitos 2032  ==  [2,3]
digitos :: Integer -> [Integer]
digitos n =
  nub [read [c] | c <- show n, c /= '0']
 
-- (minimoSumandos xs n) es el menor número de elementos de la lista de
-- enteros positivos xs (con posibles repeticiones) cuya suma es n. Por
-- ejemplo, 
--    minimoSumandos [7,2,4] 11  ==  2
minimoSumandos :: [Integer] -> Integer -> Integer
minimoSumandos xs n =
  minimum (map genericLength (sumas xs n))
 
-- (sumas xs n) es la lista de elementos de la lista de enteros
-- positivos xs (con posibles repeticiones) cuya suma es n. Por ejemplo,  
--    sumas [7,2,4] 11  ==  [[7,2,2],[7,4]]
sumas :: [Integer] -> Integer -> [[Integer]]
sumas [] 0 = [[]]
sumas [] _ = []
sumas (x:xs) n
  | x <= n    = map (x:) (sumas (x:xs) (n-x)) ++ sumas xs n
  | otherwise = sumas xs n
 
-- 2ª solución
-- ===========
 
minimoSumandosDigitos2 :: Integer -> Integer
minimoSumandosDigitos2 n = aux n 
  where
    aux 0 = 0
    aux k = 1 + minimo [aux (k - x) | x <- ds,  k >= x]
    ds    = digitos n
    infinito = 10^100
    minimo xs | null xs   = infinito
              | otherwise = minimum xs
 
-- 3ª solución
-- ===========
 
minimoSumandosDigitos3 :: Integer -> Integer
minimoSumandosDigitos3 n = v ! n
  where
    v   = array (0,n) [(i,f i) | i <- [0..n]]
    f 0 = 0
    f k = 1 + minimo [v ! (k - x) | x <- ds, k >= x]
    ds       = digitos n
    infinito = 10^100
    minimo xs | null xs   = infinito
              | otherwise = minimum xs
 
-- Equivalencia de las definiciones
-- ================================
 
-- La propiedad es
prop_minimoSumandosDigitos :: Positive Integer -> Bool
prop_minimoSumandosDigitos (Positive n) =
  r1 == r2 && r2 == r3
  where
    r1 = minimoSumandosDigitos n
    r2 = minimoSumandosDigitos n
    r3 = minimoSumandosDigitos n
 
-- La comprobación es
--    λ> quickCheckWith (stdArgs {maxSize=9}) prop_minimoSumandosDigitos
--    +++ OK, passed 100 tests.
 
-- Definición de graficaMinimoSumandosDigitos
-- ==========================================
 
graficaMinimoSumandosDigitos :: Integer -> IO ()
graficaMinimoSumandosDigitos n =
  plotList [ Key Nothing
           -- , PNG "Numero_como_suma_de_sus_digitos.png"
           ]
           [minimoSumandosDigitos k | k <- [0..n-1]]

Medias de dígitos de pi

El fichero Digitos_de_pi.txt contiene el número pi con un millón de decimales; es decir,

   3.1415926535897932384626433832 ... 83996346460422090106105779458151

Definir las funciones

   mediasDigitosDePi        :: IO [Double]
   graficaMediasDigitosDePi :: Int -> IO ()

tales que

  • mediasDigitosDePi es la sucesión cuyo n-ésimo elemento es la media de los n primeros dígitos de pi. Por ejemplo,
     λ> xs <- mediasDigitosDePi
     λ> take 5 xs
     [1.0,2.5,2.0,2.75,4.0]
     λ> take 10 xs
     [1.0,2.5,2.0,2.75,4.0,3.6666666666666665,4.0,4.125,4.0,4.1]
     λ> take 10 <$> mediasDigitosDePi
     [1.0,2.5,2.0,2.75,4.0,3.6666666666666665,4.0,4.125,4.0,4.1]
  • (graficaMediasDigitosDePi n) dibuja la gráfica de los n primeros términos de mediasDigitosDePi. Por ejemplo,
    • (graficaMediasDigitosDePi 20) dibuja
    • (graficaMediasDigitosDePi 200) dibuja
    • (graficaMediasDigitosDePi 2000) dibuja

Soluciones

import Data.Char (digitToInt)
import Data.List (genericLength, inits, tails)
import Graphics.Gnuplot.Simple ( Attribute (Key, PNG)
                               , plotList )
 
-- Definición de mediasDigitosDePi
-- ===============================
 
mediasDigitosDePi :: IO [Double]
mediasDigitosDePi = do
  (_:_:ds) <- readFile "Digitos_de_pi.txt"
  return (medias (digitos ds))
 
-- (digitos cs) es la lista de los digitos de cs. Por ejempplo,
--    digitos "1415926535"  ==  [1,4,1,5,9,2,6,5,3,5]
digitos :: String -> [Int]
digitos = map digitToInt
 
-- (medias xs) es la lista de las medias de los segmentos iniciales de
-- xs. Por ejemplo,
--    λ> medias [1,4,1,5,9,2,6,5,3,5]
--    [1.0,2.5,2.0,2.75,4.0,3.6666666666666665,4.0,4.125,4.0,4.1]
medias :: [Int] -> [Double]
medias xs = map media (tail (inits xs))
 
-- (media xs) es la media aritmética de xs. Por ejemplo,
--    media [1,4,1,5,9]  ==  4.0
media :: [Int] -> Double
media xs = fromIntegral (sum xs) / genericLength xs
 
-- Definición de graficaMediasDigitosDePi
-- ======================================
 
graficaMediasDigitosDePi :: Int -> IO ()
graficaMediasDigitosDePi n = do
  xs <- mediasDigitosDePi
  plotList [ Key Nothing
           , PNG ("Medias_de_digitos_de_pi_" ++ show n ++ ".png")
           ]
           (take n xs)

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Pensamiento

Es el mejor de los buenos
quien sabe que en esta vida
todo es cuestión de medida:
un poco más, algo menos.

Antonio Machado