Por 3 o más 5

El enunciado del problema Por 3 o más 5 de ¡Acepta el reto! es el siguiente

Cuenta la leyenda que un famoso matemático, tras aprender a sumar y multiplicar a la tierna edad de 3 años en apenas 5 días, se dio cuenta de que, empezando por 1, podía generar un montón de números sin más que multiplicar por 3 o sumar 5 a alguno de los que ya hubiera generado antes.

Por ejemplo, el 23 (edad a la que se casaría) lo obtuvo así: ((1 + 5) × 3) + 5
Por su parte el 77 (edad a la que tendría su primer bisnieto) lo consiguió: (((1 × 3 + 5) × 3) × 3) + 5

Por mucho que lo intentó, algunos números, sin embargo, resultaron ser imposibles de obtener, como por ejemplo el 5, el 7 o el 15.

Se dice que un número es generable si se puede escribir como una sucesión (quizá vacía) de multiplicaciones por 3 y sumas de 5 al número 1.

Definir las siguientes funciones

tales que

  • generables es la sucesión de los números generables. Por ejemplo,

  • (generable x) se verifica si x es generable. Por ejemplo,

  • (arbolGenerable x) es el árbol de los números generables menores o iguales a x. Por ejemplo,

Soluciones

Números cubifinitos

El enunciado del problema Números cubifinitos de ¡Acepta el reto! es el siguiente

Se dice que un número es cubifinito cuando al elevar todos sus dígitos al cubo y sumarlos el resultado o bien es 1 o bien es un número cubifinito.

Por ejemplo, el número 1243 es cubifinito, pues al elevar todos sus dígitos al cubo obtenemos 100 que es cubifinito.

Por su parte, el 513 no es cubifinito, pues al elevar al cubo sus dígitos conseguimos el 153 que nunca podrá ser cubifinito, pues la suma de los cubos de sus dígitos vuelve a dar 153.

Definir las funciones

tales que

  • (esCubifinito n) se verifica si n es un número cubifinito. Por ejemplo,

  • (grafica n) dibuja la gráfica de la sucesión de los primeros n números cubifinitos. Por ejemplo, al evaluar (grafica 50) se dibuja
    Numeros_cubifinitos

Soluciones

Generadores de números de Gabonacci

Los números de Gabonacci generados por (a,b) son los elementos de la sucesión de Gabonacci definida por

Por ejemplo, la sucesión de Gabonacci generada por (2,5) es 2, 5, 7, 12, 19, 31, 50, 81, 131, 212, …

Un número pertenece a distintas sucesiones de Gabonacci. Por ejemplo, el 9 pertenece a las sucesiones de Gabonacci generados por (3,3), (1,4) y (4,5).

El menor generador de Gabonacci de un número x es el par (a,b), con 1 ≤ a ≤ b, tal que (a,b) es un generador de Gabonacci de x y no existe ningún generador de Gabonacci de x (a’,b’) tal que b’ < b ó b’ = b y a’ < a. Por ejemplo, el menor generador de Gabonacci de 9 es (3,3).

Definir la función

tal que (menorGenerador x) es el menor generador de Gabonacci de x. Por ejemplo,

Soluciones

Números construibles como sumas de dos dados

Un número x es construible a partir de de los números enteros positivos a y b si se puede escribir como una suma cuyos sumandos son a o b. Por ejemplo, 7 y 9 son construibles a partir de 2 y 3 ya que 7 = 2+2+3 y 9 = 3+3+3.

Definir las funciones

tales que

  • (construibles a b) es la lista de los números construibles a partir de a y b. Por ejemplo,

  • (esConstruible a b x) se verifica si x es construible a partir de a y b. Por ejemplo,

Soluciones

Sucesiones alícuotas

La sucesión alícuota de un número x es la sucesión cuyo primer término es x y cada otro término es la suma de los divisores propios del término anterior. Por ejemplo, la sucesión alícuota de 10 es [10,8,7,1,0,0,0] ya que

Definir la función

tal que (sucAlicuota x) es la sucesión alícuota de x. Por ejemplo,

Soluciones

Cadena de primos

La lista de los primeros números primos es

Los primeros elementos de la cadena obtenida concatenado los números primos es

Definir la función

tal que (primoEnPosicion n) es el número primo que tiene algún dígito en la posición n de la cadena obtenida concatenado los números primos. Por ejemplo,

Soluciones

La conjetura de Rodolfo

El pasado 1 de enero, Claudio Meller publicó el artículo La conjetura de Rodolfo que afirma que

Todos los números naturales se pueden números pueden expresarse como la suma de un capicúa y un capicúa especial (siendo los capicúas especiales los números que al quitarles los ceros finales son capicúas; por ejemplo, 32300, 50500 y 78987).

Definir las funciones

tales que

  • (descomposiciones x) es la lista de las descomposiciones de x como la suma de un capicúa y un capicúa especial. Por ejemplo,

  • contraejemplosConjeturaRodolfo es la lista de contraejemplos de la conjetura de Rodolfo; es decir, de los números que no pueden expresarse com la suma de un capicúa y un capicúa especial. Por ejemplo,

Soluciones

Inversa del factorial

Definir la función

tal que (inversaFactorial x) es (Just n) si el factorial de n es x y es Nothing si no existe ningún número n tal que el factorial de n es x. Por ejemplo,

Soluciones

Sumas de tres capicúas

Definir la función

tales que (sumas3Capicuas x) es la lista de las descomposiciones de x como suma de tres capicúas (con los sumandos no decrecientes). Por ejemplo,

Comprobar con QuickCheck que todo número natural se puede escribir como suma de tres capicúas.

Soluciones

Sin ceros finales

Definir la función

tal que (sinCerosFinales n) es el número obtenido eliminando los ceros finales de n. Por ejemplo,

Comprobar con QuickCheck que, para cualquier número entero n,

Soluciones

Huecos de Euclides

El teorema de Euclides afirma que existen infinitos números primos. En palabras de Euclides,

«Hay más números primos que cualquier cantidad propuesta de números primos.» (Proposición 20 del Libro IX de «Los Elementos»)

Su demostración se basa en que si p₁,…,pₙ son los primeros n números primos, entonces entre 1+pₙ y 1+p₁·p₂·…·pₙ hay algún número primo. La cantidad de dichos números primos se llama el n-ésimo hueco de Euclides. Por ejemplo, para n = 3 se tiene que p₁ = 2, p₂ = 3 y p₃ = 5 entre 1+p₃ = 6 y 1+p₁·p₂·p₃ = 31 hay 8 números primos (7, 11, 13, 17, 19, 23, 29 y 31), por lo que el valor del tercer hueco de Euclides es 8.

Definir la función

tal que (hueco n) es el n-ésimo hueco de Eulides. Por ejemplo,

Soluciones

Referencias

Números perfectos y cojonudos

Un número perfecto es un número entero positivo que es igual a la suma de sus divisores propios. Por ejemplo, el 28 es perfecto porque sus divisores propios son 1, 2, 4, 7 y 14 y 1+2+4+7+14 = 28.

Un entero positivo x es un número cojonudo si existe un n tal que n > 0, x = 2^n·(2^(n+1)-1) y 2^(n+1)-1 es primo. Por ejemplo, el 28 es cojonudo ya que para n = 2 se verifica que 2 > 0, 28 = 2^2·(2^3-1) y 2^3-1 = 7 es primo.

Definir la funciones

tales que

  • (esPerfecto x) se verifica si x es perfecto. Por ejemplo,

  • (esCojonudo x) se verifica si x es cojonudo. Por ejemplo,

  • (equivalenciaCojonudosPerfectos n) se verifica si para todos los números x menores o iguales que n se tiene que x es perfecto si, y sólo si, x es cojonudo. Por ejemplo,

Soluciones

Conjuntos de primos emparejables

Un conjunto de primos emparejables es un conjunto S de números primos tales que al concatenar cualquier par de elementos de S se obtiene un número primo. Por ejemplo, {3, 7, 109, 673} es un conjunto de primos emparejables ya que sus elementos son primos y las concatenaciones de sus parejas son 37, 3109, 3673, 73, 7109, 7673, 1093, 1097, 109673, 6733, 6737 y 673109 son primos.

Definir la función

tal que (emparejables n m) es el conjunto de los conjuntos emparejables de n elementos menores que n. Por ejemplo,

Soluciones

Índices de números de Fibonacci

Los primeros términos de la sucesión de Fibonacci son

Se observa que el 6º término de la sucesión (comenzando a contar en 0) es el número 8.

Definir la función

tal que (indiceFib x) es justo el número n si x es el n-ésimo términos de la sucesión de Fibonacci o Nothing en el caso de que x no pertenezca a la sucesión. Por ejemplo,

Soluciones

En Maxima

Eliminación de espacios extremos

Definir la función

tal que (sinEspaciosExtremos cs) es la cadena obtenida eliminando los espacios blancos de los extremos de la cadena cs. Por ejemplo,

Soluciones

Sumas digitales de primos consecutivos

Definir la función

tal que (primosConsecutivosConSumasDigitalesPrimas k) es la sucesión de listas de k primos consecutivos tales que las sumas ordenadas de sus dígitos también son primos consecutivos. Por ejemplo,

Soluciones

Referencias

Basado en el artículo DigitSums of some consecutive primes del blog Fun With Num3ers.

Productos de N números consecutivos

La semana pasada se planteó en Twitter el siguiente problema

Se observa que

¿Existen ejemplos de otros productos de cuatro enteros consecutivos iguales a un producto de tres enteros consecutivos?

Definir la función

tal que (esProductoDeNconsecutivos n x) es (Just m) si x es el producto de n enteros consecutivos a partir de m y es Nothing si x no es el producto de n enteros consecutivos. Por ejemplo,

Para ejemplos mayores,

Usando la función esProductoDeNconsecutivos resolver el problema.

Soluciones

Agrupamiento de consecutivos iguales

Definir las funciones

tales que

  • (agrupa xs) es la lista obtenida agrupando las ocurrencias consecutivas de elementos de xs junto con el número de dichas ocurrencias. Por ejemplo:

  • (expande xs) es la lista expandida correspondiente a ps (es decir, es la lista xs tal que la comprimida de xs es ps. Por ejemplo,

Comprobar con QuickCheck que dada una lista de enteros, si se la agrupa y después se expande se obtiene la lista inicial.

Soluciones

Siguiente elemento en una lista

Definir la función

tal que (siguiente x ys) es justo el elemento siguiente a la primera ocurrencia de x en ys o Nothing si x no pertenece a ys. Por ejemplo,

Soluciones

División según una propiedad

Enunciado

Definir la función

tal que (divideSegun p xs) es la lista de los segmentos de xs cuyos elementos no cumplen la propiedad p. Por ejemplo,

Comprobar con QuickCheck que, para cualquier lista xs de números enteros, la concatenación de los elementos de (divideSegun even xs) es la lista de los elementos de xs que no son pares.

Soluciones

2015 y los números con factorización capicúa

Un número tiene factorización capicúa si puede escribir como un producto de números primos tal que la concatenación de sus dígitos forma un número capicúa. Por ejemplo, el 2015 tiene factorización capicúa ya que 2015 = 13·5·31, los factores son primos y su concatenación es 13531 que es capicúa.

Definir la sucesión

formada por los números que tienen factorización capicúa. Por ejemplo,

Usando conFactorizacionesCapicuas escribir expresiones cuyos valores sean las respuestas a las siguientes preguntas y calcularlas

  1. ¿Qué lugar ocupa el 2015 en la sucesión?
  2. ¿Cuál fue el anterior año con factorización capicúa?
  3. ¿Cuál será el siguiente año con factorización capicúa?

Soluciones

2015 como raíz cuadrada de la suma de tres cubos

Todos los años, en las proximidades del final de año suelen aparecer cuestiones con propiedades del número del nuevo año. Una sobre el 2015 es la publicada el martes en la entrada 2015 como raíz de la suma de tres cubos del blog Números y algo más en la que se pide calcular tres números tales que 2015 sea igual a la raíz cuadrada de la suma de dichos tres números.

A partir de dicha entrada, se propone el siguiente problema: Definir la sucesión

cuyos elementos son los números que se pueden escribir como raíces cuadradas de sumas de tres cubos. Por ejemplo,

El 6 está en la sucesión porque 1³+2³+3³ = 36 y la raíz cuadrada de36 es 6 y el 9 está porque 3³+3³+3³ = 81 y la raíz cuadrada de 81 es 9. Algunos números tienen varias descomposiones como raíz cuadrada de suma de tres cubos; por ejemplo, el 71 se puede escribir como la raíz cuadrada de la suma de los cubos de 6, 9 y 16 y también como la de 4, 4, y 17.

A partir de la sucesión se plantean las siguientes cuestiones:

  • ¿Qué lugar ocupa el 2015 en la sucesión?
  • ¿Cuál será el próximo año que se podrá escribir como la raíz cuadrada de suma de tres cubos?
  • ¿Cuáles son las descomposiciones de 2015 como raíz cuadrada de suma de tres cubos?
  • ¿Cuáles son los años hasta el 2015 que se pueden escribir como raíz cuadrada de suma de tres cubos de más formas distintas?

Soluciones

Elementos adicionales

Enunciado

Soluciones

Números que sumados a su siguiente primo dan primos

Introducción

La Enciclopedia electrónica de sucesiones de enteros (OEIS por sus siglas en inglés, de On-Line Encyclopedia of Integer Sequences) es una base de datos que registra sucesiones de números enteros. Está disponible libremente en Internet, en la dirección http://oeis.org.

La semana pasada Antonio Roldán añadió una nueva sucesión a la OEIS, la A249624 que sirve de base para el problema de hoy.

Enunciado

Soluciones

Sin consecutivos repetidos

Enunciado

Soluciones

Llanuras de longitud dada

Enunciado

Soluciones

Referencias

Esté ejercicio está basado en el problema Llanura de números iguales con longitud igual a n propuesto Solveet!

Último dígito no nulo del factorial

Enunciado

Soluciones