Reconocimiento de potencias de 2

Definir la función

tal que (esPotenciaDeDos n) se verifica si n es una potencia de dos (suponiendo que n es mayor que 0). Por ejemplo.

Soluciones

El código se encuentra en GitHub.

Representación de Zeckendorf

Los primeros números de Fibonacci son

tales que los dos primeros son iguales a 1 y los siguientes se obtienen sumando los dos anteriores.

El teorema de Zeckendorf establece que todo entero positivo n se puede representar, de manera única, como la suma de números de Fibonacci no consecutivos decrecientes. Dicha suma se llama la representación de Zeckendorf de n. Por ejemplo, la representación de Zeckendorf de 100 es

Hay otras formas de representar 100 como sumas de números de Fibonacci; por ejemplo,

pero no son representaciones de Zeckendorf porque 1 y 2 son números de Fibonacci consecutivos, al igual que 34 y 55.

Definir la función

tal que (zeckendorf n) es la representación de Zeckendorf de n. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Eliminación de las ocurrencias aisladas.

Definir la función

tal que (eliminaAisladas x ys) es la lista obtenida eliminando en ys las ocurrencias aisladas de x (es decir, aquellas ocurrencias de x tales que su elemento anterior y posterior son distintos de x). Por ejemplo,

Soluciones

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Las sucesiones de Loomis

La sucesión de Loomis generada por un número entero positivo x es la sucesión cuyos términos se definen por

  • f(0) es x
  • f(n) es la suma de f(n-1) y el producto de los dígitos no nulos de f(n-1)

Los primeros términos de las primeras sucesiones de Loomis son

  • Generada por 1: 1, 2, 4, 8, 16, 22, 26, 38, 62, 74, 102, 104, 108, 116, 122, …
  • Generada por 2: 2, 4, 8, 16, 22, 26, 38, 62, 74, 102, 104, 108, 116, 122, 126, …
  • Generada por 3: 3, 6, 12, 14, 18, 26, 38, 62, 74, 102, 104, 108, 116, 122, 126, …
  • Generada por 4: 4, 8, 16, 22, 26, 38, 62, 74, 102, 104, 108, 116, 122, 126, 138, …
  • Generada por 5: 5, 10, 11, 12, 14, 18, 26, 38, 62, 74, 102, 104, 108, 116, 122, …

Se observa que a partir de un término todas coinciden con la generada por 1. Dicho término se llama el punto de convergencia. Por ejemplo,

  • la generada por 2 converge a 2
  • la generada por 3 converge a 26
  • la generada por 4 converge a 4
  • la generada por 5 converge a 26

Definir las siguientes funciones

tales que

  • (sucLoomis x) es la sucesión de Loomis generada por x. Por ejemplo,

  • (convergencia x) es el término de convergencia de la sucesioń de Loomis generada por x xon la geerada por 1. Por ejemplo,

  • (graficaConvergencia xs) dibuja la gráfica de los términos de convergencia de las sucesiones de Loomis generadas por los elementos de xs. Por ejemplo, (graficaConvergencia ([1..50]) dibuja
    Las_sucesiones_de_Loomis_1
    y graficaConvergencia ([1..148] \ [63,81,89,137]) dibuja
    Las_sucesiones_de_Loomis_2

Soluciones

Conjuntos de primos emparejables

Un conjunto de primos emparejables es un conjunto S de números primos tales que al concatenar cualquier par de elementos de S se obtiene un número primo. Por ejemplo, {3, 7, 109, 673} es un conjunto de primos emparejables ya que sus elementos son primos y las concatenaciones de sus parejas son 37, 3109, 3673, 73, 7109, 7673, 1093, 1097, 109673, 6733, 6737 y 673109 son primos.

Definir la función

tal que (emparejables n m) es el conjunto de los conjuntos emparejables de n elementos menores que n. Por ejemplo,

Producto de Fibonaccis consecutivos

Los números de Fibonacci son los números F(n) de la siguiente sucesión

que comienza con 0 y 1 y los siguientes términos son las sumas de los dos anteriores.

Un número x es el producto de dos números de Fibonacci consecutivos si existe un n tal que

y su prueba es (F(n),F(n+1),True). Por ejemplo, 714 es el producto de dos números de Fibonacci consecutivos ya que

Su prueba es (21, 34, True).

Un número x no es el producto de dos números de Fibonacci consecutivos si no existe un n tal que

y su prueba es (F(m),F(m+1),False) donde m es el menor número tal que

Por ejemplo, 800 no es el producto de dos números de Fibonacci consecutivos, ya que

Su prueba es (34, 55, False),

Definir la función

tal que (productoFib x) es la prueba de que es, o no es, el producto de dos números de Fibonacci consecutivos. Por ejemplo,

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Pensamiento

«El placer que obtenemos de la música proviene de contar, pero contando inconscientemente. La música no es más que aritmética inconsciente.»

Gottfried Wilhelm Leibniz.

Pandemia

¡El mundo está en cuarentena! Hay una nueva pandemia que lucha contra la humanidad. Cada continente está aislado de los demás, pero las personas infectadas se han propagado antes de la advertencia.

En este problema se representará el mundo por una cadena como la siguiente

donde 0 representa no infectado, 1 representa infectado y X representa un océano

Las reglas de propagación son:

  • El virus no puede propagarse al otro lado de un océano.
  • Si una persona se infecta, todas las personas de este continente se infectan también.
  • El primer y el último continente no están conectados.

El problema consiste en encontrar el porcentaje de la población humana que se infectó al final. Por ejemplo,

Definir la función

tal que (porcentajeInfectados xs) es el porcentaje final de infectados para el mapa inicial xs. Por ejemplo,

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Pensamiento

«El avance de las matemáticas puede ser visto como un progreso de lo infinito a lo finito.»

Gian-Carlo Rota.

La menos conocida de las conjeturas de Goldbach

Goldbach, el de la famosa conjetura, hizo por lo menos otra conjetura que finalmente resultó ser falsa.

Esta última decía que todo número compuesto impar puede expresarse como la suma de un número primo más dos veces la suma de un cuadrado. Así por ejemplo,

Definir las sucesiones

tales que

  • imparesCompuestos es la lista de los números impares compuestos. Por ejemplo,

  • (descomposiciones n) es la lista de las descomposiciones de n de n como la suma de un número primo más dos veces la suma de un cuadrado. Por ejemplo,

Las 3 descomposiciones de 21 son

  • contraejemplosGoldbach es la lista de los contraejemplos de la anterior conjetura de Goldbach; es decir, los números impares compuestos que no pueden expresarse como la suma de un número primo más dos veces la suma de un cuadrado. Por ejemplo,

Comprobar con QuickCheck que la conjetura de Golbach se verifica a partir de 5993; es decir, todo número compuesto impar mayor que 5993 puede expresarse como la suma de un número primo más dos veces la suma de un cuadrado.

Nota: Basado en el artículo La menos conocida de las conjeturas de Goldbach de Claudio Meller en el blog Números y algo más.

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang=»haskell»> y otra con </pre>

Pensamiento

«Obvio es la palabra más peligrosa de las matemáticas.»

Eric Temple Bell

Teorema de la amistad

El teorema de la amistad afirma que

En cualquier reunión de n personas hay al menos dos personas que tienen el mismo número de amigos (suponiendo que la relación de amistad es simétrica).

Se pueden usar las siguientes representaciones:

  • números enteros para representar a las personas,
  • pares de enteros (x,y), con x < y, para representar que la persona x e y son amigas y
  • lista de pares de enteros para representar la reunión junto con las relaciones de amistad.

Por ejemplo, [(2,3),(3,5)] representa una reunión de tres personas
(2, 3 y 5) donde

  • 2 es amiga de 3,
  • 3 es amiga de 2 y 5 y
  • 5 es amiga de 3.
    Si clasificamos las personas poniendo en la misma clase las que tienen el mismo número de amigos, se obtiene [[2,5],[3]] ya que 2 y 5 tienen 1 amigo y 3 tiene 2 amigos.

Definir la función

tal que (clasesAmigos r) es la clasificación según el número de amigos de las personas de la reunión r; es decir, la lista cuyos elementos son las listas de personas con 1 amigo, con 2 amigos y así hasta que se completa todas las personas de la reunión r. Por ejemplo,

Comprobar con QuickCheck el teorema de la amistad; es decir, si r es una lista de pares de enteros, entonces (clasesAmigos r’) donde r’ es la lista de los pares (x,y) de r con x < y y se supone que r’ es no vacía.

Soluciones

Referencia

Pensamiento

Me dijo el agua clara que reía,
bajo el sol, sobre el mármol de la fuente:
si te inquieta el enigma del presente
aprende el son de la salmodia mía.

Antonio Machado

Postulado de Bertrand

El postulado de Bertrand afirma que para cualquier número entero n > 1, existe al menos un número primo p con n < p < 2n.

Definir la función

tal que (siguientePrimo n) es el menor primo mayor que n. Por ejemplo,

Comprobar con QuickCheck el postulado de Bertrand; es decir, para todo entero n > 1, se verifica que n < p < 2n, donde p es (siguientePrimo n).

Soluciones

Referencias

Pensamiento

Pero caer de cabeza,
en esta noche sin luna,
en medio de esta maleza,
junto a la negra laguna.

Antonio Machado

Intersección de listas infinitas crecientes

Definir la función

tal que (interseccion xss) es la intersección de la lista no vacía de listas infinitas crecientes xss; es decir, la lista de los elementos que pertenecen a todas las listas de xss. Por ejemplo,

Soluciones

Pensamiento

Dios no es el creador del mundo (según Martín), sino el creador de la nada.

Antonio Machado

Transformaciones lineales de números triangulares

La sucesión de los números triangulares se obtiene sumando los números naturales. Así, los 8 primeros números triangulares son

Para cada número triangular n existen números naturales a y b, tales que a . n + b también es triangular. Para n = 6, se tiene que

son números triangulares

Definir la función

tal que si n es triangular, (transformaciones n) es la lista de los pares (a,b) tales que a es un entero positivo y b el menor número tal que a . n + b es triangular. Por ejemplo,

Soluciones

Pensamiento

A la hora del rocío,
de la niebla salen
sierra blanca y prado verde.
¡El sol en los encinares!

Antonio Machado

Último dígito no nulo del factorial

El factorial de 7 es

por tanto, el último dígito no nulo del factorial de 7 es 4.

Definir la función

tal que (ultimoNoNuloFactorial n) es el último dígito no nulo del factorial de n. Por ejemplo,

Comprobar con QuickCheck que si n es mayor que 4, entonces el último dígito no nulo del factorial de n es par.

Soluciones

Pensamiento

Busca el tu esencial,
que no está en ninguna parte
y en todas partes está.

Antonio Machado

Las sucesiones de Loomis

La sucesión de Loomis generada por un número entero positivo x es la sucesión cuyos términos se definen por

  • f(0) es x
  • f(n) es la suma de f(n-1) y el producto de los dígitos no nulos de f(n-1)

Los primeros términos de las primeras sucesiones de Loomis son

  • Generada por 1: 1, 2, 4, 8, 16, 22, 26, 38, 62, 74, 102, 104, 108, 116, 122, …
  • Generada por 2: 2, 4, 8, 16, 22, 26, 38, 62, 74, 102, 104, 108, 116, 122, 126, …
  • Generada por 3: 3, 6, 12, 14, 18, 26, 38, 62, 74, 102, 104, 108, 116, 122, 126, …
  • Generada por 4: 4, 8, 16, 22, 26, 38, 62, 74, 102, 104, 108, 116, 122, 126, 138, …
  • Generada por 5: 5, 10, 11, 12, 14, 18, 26, 38, 62, 74, 102, 104, 108, 116, 122, …

Se observa que a partir de un término todas coinciden con la generada por 1. Dicho término se llama el punto de convergencia. Por ejemplo,

  • la generada por 2 converge a 2
  • la generada por 3 converge a 26
  • la generada por 4 converge a 4
  • la generada por 5 converge a 26

Definir las siguientes funciones

tales que

  • (sucLoomis x) es la sucesión de Loomis generada por x. Por ejemplo,

  • (convergencia x) es el término de convergencia de la sucesioń de Loomis generada por x xon la geerada por 1. Por ejemplo,

  • (graficaConvergencia xs) dibuja la gráfica de los términos de convergencia de las sucesiones de Loomis generadas por los elementos de xs. Por ejemplo, (graficaConvergencia ([1..50]) dibuja
    Las_sucesiones_de_Loomis_1
    y graficaConvergencia ([1..148] \ [63,81,89,137]) dibuja
    Las_sucesiones_de_Loomis_2

Soluciones

Pensamiento

Era una noche del mes
de mayo, azul y serena.
Sobre el agudo ciprés
brillaba la luna llena.

Antonio Machado

Siguiente mayor

Definir la función

tal que (siguienteMayos xs) es la lista obtenida sustiyendo cada elemento de xs por el primer elemento de xs a la derechha de x que sea mayor que x, si existe y Nothing en caso contrario. Por ejemplo,

Soluciones

Pensamiento

Si vivir es bueno
es mejor soñar,
y mejor que todo,
madre, despertar.

Antonio Machado

Números cíclopes

Un número cíclope es un número natural cuya representación binaria sólo tiene un cero en el centro. Por ejemplo,

Definir las funciones

tales que

  • (esCiclope n) se verifica si el número natual n es cíclope. Por ejemplo,

  • ciclopes es la lista de los número cíclopes. Por ejemplo,

  • (graficaCiclopes n) dibuja la gráfica del último dígito de los n primeros números cíclopes. Por ejemplo, (graficaCiclopes n) dibuja

Soluciones

Pensamiento

¿Sabes cuando el agua suena,
si es agua de cumbre o valle,
de plaza, jardín o huerta?
Cantores, dejad
palmas y jaleo
para los demás.

Antonio Machado

Intersección de listas infinitas crecientes

Definir la función

tal que (interseccion xss) es la intersección de la lista no vacía de listas infinitas crecientes xss; es decir, la lista de los elementos que pertenecen a todas las listas de xss. Por ejemplo,

Soluciones

Pensamiento

Alguna vez he pensado
si el alma será la ausencia,
mientras más cerca más lejos;
mientras más lejos más cerca.

Antonio Machado

El 2019 es un número de la suerte

Un número de la suerte es un número natural que se genera por una criba, similar a la criba de Eratóstenes, como se indica a continuación:

Se comienza con la lista de los números enteros a partir de 1:

Se eliminan los números de dos en dos

Como el segundo número que ha quedado es 3, se eliminan los números restantes de tres en tres:

Como el tercer número que ha quedado es 7, se eliminan los números restantes de siete en siete:

Este procedimiento se repite indefinidamente y los supervivientes son los números de la suerte:

Definir las funciones

tales que

  • numerosDeLaSuerte es la sucesión de los números de la suerte. Por ejemplo,

  • (esNumeroDeLaSuerte n) que se verifica si n es un número de la suerte. Por ejemplo,

Soluciones

Pensamiento

Ya es sólo brocal el pozo;
púlpito será mañana;
pasado mañana, trono.

Antonio Machado

Raíz cúbica entera

Un número x es un cubo si existe un y tal que x = y^3. Por ejemplo, 8 es un cubo porque 8 = 2^3.

Definir la función

tal que (raizCubicaEntera x n) es justo la raíz cúbica del número natural x, si x es un cubo y Nothing en caso contrario. Por ejemplo,

Soluciones