Menu Close

Etiqueta: Dinámica

Cambio con el menor número de monedas

El problema del cambio con el menor número de monedas consiste en, dada una lista ms de tipos de monedas (con infinitas monedas de cada tipo) y una cantidad objetivo x, calcular el menor número de monedas de ms cuya suma es x. Por ejemplo, con monedas de 1, 3 y 4 céntimos se puede obtener 6 céntimos de 4 formas

   1, 1, 1, 1, 1, 1
   1, 1, 1, 3
   1, 1, 4
   3, 3

El menor número de monedas que se necesita es 2. En cambio, con monedas de 2, 5 y 10 es imposible obtener 3.

Definir

   monedas :: [Int] -> Int -> Maybe Int

tal que (monedas ms x) es el menor número de monedas de ms cuya suma es x, si es posible obtener dicha suma y es Nothing en caso contrario. Por ejemplo,

   monedas [1,3,4]  6                    ==  Just 2
   monedas [2,5,10] 3                    ==  Nothing
   monedas [1,2,5,10,20,50,100,200] 520  ==  Just 4

Soluciones

import Data.Array ((!), array)
 
-- 1ª solución
-- ===========
 
monedas :: [Int] -> Int -> Maybe Int
monedas ms x
  | null cs   = Nothing
  | otherwise = Just (minimum (map length cs))
  where cs = cambios ms x
 
-- (cambios ms x) es la lista de las foemas de obtener x sumando monedas
-- de ms. Por ejemplo,
--   λ> cambios [1,5,10] 12
--   [[1,1,1,1,1,1,1,1,1,1,1,1],[1,1,1,1,1,1,1,5],[1,1,5,5],[1,1,10]]
--   λ> cambios [2,5,10] 3
--   []
--   λ> cambios [1,3,4] 6
--   [[1,1,1,1,1,1],[1,1,1,3],[1,1,4],[3,3]]
cambios :: [Int] -> Int -> [[Int]]
cambios _      0 = [[]]
cambios []     _ = []
cambios (k:ks) m
  | m < k     = []
  | otherwise = [k:zs | zs <- cambios (k:ks) (m - k)] ++
                cambios ks m
 
-- 2ª solución
-- ===========
 
monedas2 :: [Int] -> Int -> Maybe Int
monedas2 ms n
  | sol == infinito = Nothing
  | otherwise       = Just sol
  where
    sol = aux n
    aux 0 = 0
    aux k = siguiente (minimo [aux (k - x) | x <- ms,  k >= x])
 
infinito :: Int
infinito = 10^30
 
minimo :: [Int] -> Int
minimo [] = infinito
minimo xs = minimum xs
 
siguiente :: Int -> Int
siguiente x | x == infinito = infinito
            | otherwise     = 1 + x
 
-- 3ª solución
-- ===========
 
monedas3 :: [Int] -> Int -> Maybe Int
monedas3 ms n  
  | sol == infinito = Nothing
  | otherwise       = Just sol
  where
    sol = v ! n
    v   = array (0,n) [(i,f i) | i <- [0..n]]
    f 0 = 0
    f k = siguiente (minimo [v ! (k - x) | x <- ms, k >= x])
 
-- Comparación de eficiencia
-- =========================
 
--    λ> monedas [1,2,5,10,20,50,100,200] 27
--    Just 3
--    (0.02 secs, 871,144 bytes)
--    λ> monedas2 [1,2,5,10,20,50,100,200] 27
--    Just 3
--    (15.44 secs, 1,866,519,080 bytes)
--    λ> monedas3 [1,2,5,10,20,50,100,200] 27
--    Just 3
--    (0.01 secs, 157,232 bytes)
--    
--    λ> monedas [1,2,5,10,20,50,100,200] 188
--    Just 7
--    (14.20 secs, 1,845,293,080 bytes)
--    λ> monedas3 [1,2,5,10,20,50,100,200] 188
--    Just 7
--    (0.01 secs, 623,376 bytes)

Números de Perrin

Los números de Perrin se definen por la elación de recurrencia

   P(n) = P(n - 2) + P(n - 3) si n > 2,

con los valores iniciales

   P(0) = 3, P(1) = 0 y P(2) = 2.

Definir la sucesión

   sucPerrin :: [Integer]

cuyos elementos son los números de Perrin. Por ejemplo,

   λ> take 15 sucPerrin
   [3,0,2,3,2,5,5,7,10,12,17,22,29,39,51]
   λ> length (show (sucPerrin !! (2*10^5)))
   24425

Comprobar con QuickCheck si se verifica la siguiente propiedad: para todo entero n > 1, el n-ésimo término de la sucesión de Perrin es divisible por n si y sólo si n es primo.

Soluciones

import Data.List (genericIndex, unfoldr)
import Data.Numbers.Primes (isPrime)
import Test.QuickCheck
 
-- 1ª solución
sucPerrin1 :: [Integer]
sucPerrin1 = 3 : 0 : 2 : zipWith (+) sucPerrin1 (tail sucPerrin1)
 
-- 2ª solución
sucPerrin2 :: [Integer]
sucPerrin2 = [x | (x,_,_) <- iterate op (3,0,2)]
  where op (a,b,c) = (b,c,a+b)
 
-- 3ª solución
sucPerrin3 :: [Integer]
sucPerrin3 =
  unfoldr (\(a, (b,c)) -> Just (a, (b,(c,a+b)))) (3,(0,2))
 
-- 4ª solución
sucPerrin4 :: [Integer]
sucPerrin4 = [vectorPerrin n ! n | n <- [0..]]
 
vectorPerrin :: Integer -> Array Integer Integer
vectorPerrin n = v where
  v = array (0,n) [(i,f i) | i <- [0..n]]
  f 0 = 3
  f 1 = 0
  f 2 = 2
  f i = v ! (i-2) + v ! (i-3)
 
-- Comparación de eficiencia
--    λ> length (show (sucPerrin1 !! (3*10^5)))
--    36638
--    (1.62 secs, 2,366,238,984 bytes)
--    λ> length (show (sucPerrin2 !! (3*10^5)))
--    36638
--    (1.40 secs, 2,428,701,384 bytes)
--    λ> length (show (sucPerrin3 !! (3*10^5)))
--    36638
--    (1.14 secs, 2,409,504,864 bytes)
--    λ> length (show (sucPerrin4 !! (3*10^5)))
--    36638
--    (1.78 secs, 2,585,400,776 bytes)
 
 
-- Usaremos la 3ª
sucPerrin :: [Integer]
sucPerrin = sucPerrin3
 
-- La propiedad es  
conjeturaPerrin :: Integer -> Property
conjeturaPerrin n =
  n > 1 ==>
  (perrin n `mod` n == 0) == isPrime n
 
-- (perrin n) es el n-ésimo término de la sucesión de Perrin. Por
-- ejemplo,
--    perrin 4  ==  2
--    perrin 5  ==  5
--    perrin 6  ==  5
perrin :: Integer -> Integer
perrin n = sucPerrin `genericIndex` n
 
-- La comprobación es
--    λ> quickCheck conjeturaPerrin
--    +++ OK, passed 100 tests.
 
-- Nota: Aunque QuickCheck no haya encontrado contraejemplos, la
-- propiedad no es cierta. Sólo lo es una de las implicaciones: si n es
-- primo, entonces el  n-ésimo término de la sucesión de Perrin es
-- divisible por n. La otra es falsa y los primeros contraejemplos son
--    271441, 904631, 16532714, 24658561, 27422714, 27664033, 46672291

Sucesión fractal

La sucesión fractal

   0, 0, 1, 0, 2, 1, 3, 0, 4, 2, 5, 1, 6, 3, 7, 0, 8, 4, 9, 2, 
   10, 5, 11, 1, 12, 6, 13, 3, 14, 7, 15, ...

está construida de la siguiente forma:

  • los términos pares forman la sucesión de los números naturales
     0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, ...
  • los términos impares forman la misma sucesión original
     0, 0, 1, 0, 2, 1, 3, 0, 4, 2, 5, 1, 6, 3, 7, ...

Definir las funciones

   sucFractal     :: [Integer]
   sumaSucFractal :: Integer -> Integer

tales que

  • sucFractal es la lista de los términos de la sucesión fractal. Por ejemplo,
     take 20 sucFractal   == [0,0,1,0,2,1,3,0,4,2,5,1,6,3,7,0,8,4,9,2]
     sucFractal !! 30     == 15
     sucFractal !! (10^7) == 5000000
  • (sumaSucFractal n) es la suma de los n primeros términos de la sucesión fractal. Por ejemplo,
     sumaSucFractal 10      == 13
     sumaSucFractal (10^5)  == 1666617368
     sumaSucFractal (10^10) == 16666666661668691669
     sumaSucFractal (10^15) == 166666666666666166673722792954
     sumaSucFractal (10^20) == 1666666666666666666616666684103392376198
     length (show (sumaSucFractal (10^15000))) == 30000
     sumaSucFractal (10^15000) `mod` (10^9)    == 455972157

Soluciones

 
-- 1ª definición de sucFractal
-- ===========================
 
sucFractal1 :: [Integer]
sucFractal1 = 
  map termino [0..]
 
-- (termino n) es el término n de la secuencia anterior. Por ejemplo,
--   termino 0            ==  0
--   termino 1            ==  0
--   map termino [0..10]  ==  [0,0,1,0,2,1,3,0,4,2,5]
termino :: Integer -> Integer
termino 0 = 0
termino n 
  | even n    = n `div` 2
  | otherwise = termino (n `div` 2)
 
-- 2ª definición de sucFractal
-- ===========================
 
sucFractal2 :: [Integer]
sucFractal2 =
  0 : 0 : mezcla [1..] (tail sucFractal2)
 
-- (mezcla xs ys) es la lista obtenida intercalando las listas infinitas
-- xs e ys. Por ejemplo,
--    take 10 (mezcla [0,2..] [0,-2..])  ==  [0,0,2,-2,4,-4,6,-6,8,-8]
mezcla :: [Integer] -> [Integer] -> [Integer]
mezcla (x:xs) (y:ys) =
  x : y : mezcla xs ys
 
-- Comparación de eficiencia de definiciones de sucFractal
-- =======================================================
 
--    λ> sum (take (10^6) sucFractal1)
--    166666169612
--    (5.56 secs, 842,863,264 bytes)
--    λ> sum (take (10^6) sucFractal2)
--    166666169612
--    (1.81 secs, 306,262,616 bytes)
 
-- En lo que sigue usaremos la 2ª definición
sucFractal :: [Integer]
sucFractal = sucFractal2
 
-- 1ª definición de sumaSucFractal
-- ===============================
 
sumaSucFractal1 :: Integer -> Integer
sumaSucFractal1 n =
  sum (map termino [0..n-1])
 
-- 2ª definición de sumaSucFractal
-- ===============================
 
sumaSucFractal2 :: Integer -> Integer
sumaSucFractal2 n =
  sum (take (fromIntegral n) sucFractal)
 
-- 3ª definición de sumaSucFractal
-- ===============================
 
sumaSucFractal3 :: Integer -> Integer
sumaSucFractal3 0 = 0
sumaSucFractal3 1 = 0
sumaSucFractal3 n
  | even n    = sumaN (n `div` 2) + sumaSucFractal3 (n `div` 2)
  | otherwise = sumaN ((n+1) `div` 2) + sumaSucFractal3 (n `div` 2)
  where sumaN n = (n*(n-1)) `div` 2
 
-- Comparación de eficiencia de definiciones de sumaSucFractal
-- ===========================================================
 
--    λ> sumaSucFractal1 (10^6)
--    166666169612
--    (5.25 secs, 810,622,504 bytes)
--    λ> sumaSucFractal2 (10^6)
--    166666169612
--    (1.72 secs, 286,444,048 bytes)
--    λ> sumaSucFractal3 (10^6)
--    166666169612
--    (0.01 secs, 0 bytes)
--    
--    λ> sumaSucFractal2 (10^7)
--    16666661685034
--    (17.49 secs, 3,021,580,920 bytes)
--    λ> sumaSucFractal3 (10^7)
--    16666661685034
--    (0.01 secs, 0 bytes)

Camino de máxima suma en una matriz

Los caminos desde el extremo superior izquierdo (posición (1,1)) hasta el extremo inferior derecho (posición (3,4)) en la matriz

   (  1  6 11  2 )
   (  7 12  3  8 )
   (  3  8  4  9 )

moviéndose en cada paso una casilla hacia abajo o hacia la derecha, son los siguientes:

   1, 7,  3, 8, 4, 9
   1, 7, 12, 8, 4, 9
   1, 7, 12, 3, 4, 9
   1, 7, 12, 3, 8, 9
   1, 6, 12, 8, 4, 9
   1, 6, 12, 3, 4, 9
   1, 6, 12, 3, 8, 9
   1, 6, 11, 3, 4, 9
   1, 6, 11, 3, 8, 9
   1, 6, 11, 2, 8, 9

Las sumas de los caminos son 32, 41, 36, 40, 40, 35, 39, 34, 38 y 37, respectivamente. El camino de máxima suma es el segundo (1, 7, 12, 8, 4, 9) que tiene una suma de 41.

Definir la función

   caminoMaxSuma :: Matrix Int -> [Int]

tal que (caminoMaxSuma m) es un camino de máxima suma en la matriz m desde el extremo superior izquierdo hasta el extremo inferior derecho, moviéndose en cada paso una casilla hacia abajo o hacia la derecha. Por ejemplo,

   λ> caminoMaxSuma (fromLists [[1,6,11,2],[7,12,3,8],[3,8,4,9]])
   [1,7,12,8,4,9]
   λ> sum (caminoMaxSuma (fromList 800 800 [1..]))
   766721999

Nota: Se recomienda usar programación dinámica.

Soluciones

import Data.Matrix
 
-- 1ª definición
-- =============
 
caminoMaxSuma1 :: Matrix Int -> [Int]
caminoMaxSuma1 m =
  head [c | c <- cs, sum c == k] 
  where cs = caminos1 m
        k  = maximum (map sum cs)
 
caminos1 :: Matrix Int -> [[Int]]
caminos1 m =
  map reverse (caminos1Aux m (nf,nc))
  where nf = nrows m
        nc = ncols m
 
-- (caminos1Aux p x) es la lista de los caminos invertidos en la matriz p
-- desde la posición (1,1) hasta la posición x. Por ejemplo,
caminos1Aux :: Matrix Int -> (Int,Int) -> [[Int]]
caminos1Aux m (1,1) = [[m!(1,1)]]
caminos1Aux m (1,j) = [[m!(1,k) | k <- [j,j-1..1]]]
caminos1Aux m (i,1) = [[m!(k,1) | k <- [i,i-1..1]]]
caminos1Aux m (i,j) = [m!(i,j) : xs
                      | xs <- caminos1Aux m (i,j-1) ++
                              caminos1Aux m (i-1,j)]
 
-- 2ª definición
-- =============
 
caminoMaxSuma2 :: Matrix Int -> [Int]
caminoMaxSuma2 m =
  head [c | c <- cs, sum c == k] 
  where cs = caminos2 m
        k  = maximum (map sum cs)
 
caminos2 :: Matrix Int -> [[Int]]
caminos2 m =
  map reverse (matrizCaminos m ! (nrows m, ncols m))
 
matrizCaminos :: Matrix Int -> Matrix [[Int]]
matrizCaminos m = q
  where
    q = matrix (nrows m) (ncols m) f
    f (1,y) = [[m!(1,z) | z <- [y,y-1..1]]]
    f (x,1) = [[m!(z,1) | z <- [x,x-1..1]]]
    f (x,y) = [m!(x,y) : cs | cs <- q!(x-1,y) ++ q!(x,y-1)]  
 
-- 3ª definición (con programación dinámica)
-- =========================================
 
caminoMaxSuma3 :: Matrix Int -> [Int]
caminoMaxSuma3 m = reverse (snd (q ! (nf,nc)))
  where nf = nrows m
        nc = ncols m
        q  = caminoMaxSumaAux m
 
caminoMaxSumaAux :: Matrix Int -> Matrix (Int,[Int])
caminoMaxSumaAux m = q 
  where
    nf = nrows m
    nc = ncols m
    q  = matrix nf nc f
      where
        f (1,1) = (m!(1,1),[m!(1,1)])
        f (1,j) = (k + m!(1,j), m!(1,j):xs)
          where (k,xs) = q!(1,j-1)
        f (i,1) = (k + m!(i,1), m!(i,1):xs)
          where (k,xs) = q!(i-1,1)        
        f (i,j) | k1 > k2   = (k1 + m!(i,j), m!(i,j):xs)
                | otherwise = (k2 + m!(i,j), m!(i,j):ys)
          where (k1,xs) = q!(i,j-1)
                (k2,ys) = q!(i-1,j)
 
-- Comparación de eficiencia
-- -------------------------
 
--    λ> length (caminoMaxSuma1 (fromList 11 11 [1..]))
--    21
--    (10.00 secs, 1,510,120,328 bytes)
--    λ> length (caminoMaxSuma2 (fromList 11 11 [1..]))
--    21
--    (3.84 secs, 745,918,544 bytes)
--    λ> length (caminoMaxSuma3 (fromList 11 11 [1..]))
--    21
--    (0.01 secs, 0 bytes)

Máximo de las sumas de los caminos en una matriz

Los caminos desde el extremo superior izquierdo (posición (1,1)) hasta el extremo inferior derecho (posición (3,4)) en la matriz

   (  1  6 11  2 )
   (  7 12  3  8 )
   (  3  8  4  9 )

moviéndose en cada paso una casilla hacia abajo o hacia la derecha, son los siguientes:

   1, 7,  3, 8, 4, 9
   1, 7, 12, 8, 4, 9
   1, 7, 12, 3, 4, 9
   1, 7, 12, 3, 8, 9
   1, 6, 12, 8, 4, 9
   1, 6, 12, 3, 4, 9
   1, 6, 12, 3, 8, 9
   1, 6, 11, 3, 4, 9
   1, 6, 11, 3, 8, 9
   1, 6, 11, 2, 8, 9

Las sumas de los caminos son 32, 41, 36, 40, 40, 35, 39, 34, 38 y 37, respectivamente. El máximo de las suma de los caminos es 41.

Definir la función

   maximaSuma :: Matrix Int -> Int

tal que (maximaSuma m) es el máximo de las sumas de los caminos en la matriz m desde el extremo superior izquierdo hasta el extremo inferior derecho, moviéndose en cada paso una casilla hacia abajo o hacia la derecha. Por ejemplo,

   λ> maximaSuma (fromLists [[1,6,11,2],[7,12,3,8],[3,8,4,9]])
   41
   λ> maximaSuma (fromList 800 800 [1..])
   766721999

Nota: Se recomienda usar programación dinámica.

Soluciones

import Data.Matrix
 
-- 1ª definición
-- =============
 
maximaSuma1 :: Matrix Int -> Int
maximaSuma1 =
  maximum . map sum . caminos1
 
caminos1 :: Matrix Int -> [[Int]]
caminos1 m =
  map reverse (caminos1Aux m (nf,nc))
  where nf = nrows m
        nc = ncols m
 
-- (caminos1Aux p x) es la lista de los caminos invertidos en la matriz p
-- desde la posición (1,1) hasta la posición x. Por ejemplo,
caminos1Aux :: Matrix Int -> (Int,Int) -> [[Int]]
caminos1Aux m (1,1) = [[m!(1,1)]]
caminos1Aux m (1,j) = [[m!(1,k) | k <- [j,j-1..1]]]
caminos1Aux m (i,1) = [[m!(k,1) | k <- [i,i-1..1]]]
caminos1Aux m (i,j) = [m!(i,j) : xs
                      | xs <- caminos1Aux m (i,j-1) ++
                              caminos1Aux m (i-1,j)]
 
-- 2ª definición
-- =============
 
maximaSuma2 :: Matrix Int -> Int
maximaSuma2 =
  maximum . map sum . caminos2
 
caminos2 :: Matrix Int -> [[Int]]
caminos2 m =
  map reverse (matrizCaminos m ! (nrows m, ncols m))
 
matrizCaminos :: Matrix Int -> Matrix [[Int]]
matrizCaminos m = q
  where
    q = matrix (nrows m) (ncols m) f
    f (1,y) = [[m!(1,z) | z <- [y,y-1..1]]]
    f (x,1) = [[m!(z,1) | z <- [x,x-1..1]]]
    f (x,y) = [m!(x,y) : cs | cs <- q!(x-1,y) ++ q!(x,y-1)]  
 
-- 3ª definicion (por recursión, sin calcular el camino)
-- =====================================================
 
maximaSuma3 :: Matrix Int -> Int
maximaSuma3 m = maximaSuma3Aux m (nf,nc)
  where nf = nrows m
        nc = ncols m
 
-- (maximaSuma3Aux m p) calcula la suma máxima de un camino hasta la
-- posición p. Por ejemplo,
--    λ> maximaSuma3Aux (fromLists [[1,6,11,2],[7,12,3,8],[3,8,4,9]]) (3,4)
--    41
--    λ> maximaSuma3Aux (fromLists [[1,6,11,2],[7,12,3,8],[3,8,4,9]]) (3,3)
--    32
--    λ> maximaSuma3Aux (fromLists [[1,6,11,2],[7,12,3,8],[3,8,4,9]]) (2,4)
--    31
maximaSuma3Aux :: Matrix Int -> (Int,Int) -> Int
maximaSuma3Aux m (1,1) = m ! (1,1)
maximaSuma3Aux m (1,j) = maximaSuma3Aux m (1,j-1) + m ! (1,j)
maximaSuma3Aux m (i,1) = maximaSuma3Aux m (i-1,1) + m ! (i,1)
maximaSuma3Aux m (i,j) =
  max (maximaSuma3Aux m (i,j-1)) (maximaSuma3Aux m (i-1,j)) + m ! (i,j)
 
-- 4ª solución (mediante programación dinámica)
-- ============================================
 
maximaSuma4 :: Matrix Int -> Int
maximaSuma4 m = q ! (nf,nc)
  where nf = nrows m
        nc = ncols m
        q  = matrizMaximaSuma m
 
-- (matrizMaximaSuma m) es la matriz donde en cada posición p se
-- encuentra el máxima de las sumas de los caminos desde (1,1) a p en la
-- matriz m. Por ejemplo,   
--    λ> matrizMaximaSuma (fromLists [[1,6,11,2],[7,12,3,8],[3,8,4,9]]) 
--    (  1  7 18 20 )
--    (  8 20 23 31 )
--    ( 11 28 32 41 )
matrizMaximaSuma :: Matrix Int -> Matrix Int
matrizMaximaSuma m = q 
  where nf = nrows m
        nc = ncols m
        q  = matrix nf nc f
          where  f (1,1) = m ! (1,1)
                 f (1,j) = q ! (1,j-1) + m ! (1,j)
                 f (i,1) = q ! (i-1,1) + m ! (i,1)
                 f (i,j) = max (q ! (i,j-1)) (q ! (i-1,j)) + m ! (i,j)
 
-- Comparación de eficiencia
-- =========================
 
--    λ> maximaSuma1 (fromList 8 8 [1..])
--    659
--    (0.11 secs, 31,853,136 bytes)
--    λ> maximaSuma1a (fromList 8 8 [1..])
--    659
--    (0.09 secs, 19,952,640 bytes)
-- 
--    λ> maximaSuma1 (fromList 10 10 [1..])
--    1324
--    (2.25 secs, 349,722,744 bytes)
--    λ> maximaSuma2 (fromList 10 10 [1..])
--    1324
--    (0.76 secs, 151,019,296 bytes)
--    
--    λ> maximaSuma2 (fromList 11 11 [1..])
--    1781
--    (3.02 secs, 545,659,632 bytes)
--    λ> maximaSuma3 (fromList 11 11 [1..])
--    1781
--    (1.57 secs, 210,124,912 bytes)
--    
--    λ> maximaSuma3 (fromList 12 12 [1..])
--    2333
--    (5.60 secs, 810,739,032 bytes)
--    λ> maximaSuma4 (fromList 12 12 [1..])
--    2333
--    (0.01 secs, 23,154,776 bytes)

Caminos en una matriz

Los caminos desde el extremo superior izquierdo (posición (1,1)) hasta el extremo inferior derecho (posición (3,4)) en la matriz

   (  1  6 11  2 )
   (  7 12  3  8 )
   (  3  8  4  9 )

moviéndose en cada paso una casilla hacia abajo o hacia la derecha, son los siguientes:

   1, 7,  3, 8, 4, 9
   1, 7, 12, 8, 4, 9
   1, 7, 12, 3, 4, 9
   1, 7, 12, 3, 8, 9
   1, 6, 12, 8, 4, 9
   1, 6, 12, 3, 4, 9
   1, 6, 12, 3, 8, 9
   1, 6, 11, 3, 4, 9
   1, 6, 11, 3, 8, 9
   1, 6, 11, 2, 8, 9

Definir la función

   caminos :: Matrix Int -> [[Int]]

tal que (caminos m) es la lista de los caminos en la matriz m desde el extremo superior izquierdo hasta el extremo inferior derecho, moviéndose en cada paso una casilla hacia abajo o hacia la derecha. Por ejemplo,

   λ> caminos (fromLists [[1,6,11,2],[7,12,3,8],[3,8,4,9]])
   [[1,7, 3,8,4,9],
    [1,7,12,8,4,9],
    [1,7,12,3,4,9],
    [1,7,12,3,8,9],
    [1,6,12,8,4,9],
    [1,6,12,3,4,9],
    [1,6,12,3,8,9],
    [1,6,11,3,4,9],
    [1,6,11,3,8,9],
    [1,6,11,2,8,9]]
   λ> length (caminos (fromList 12 13 [1..]))
   1352078

Nota: Se recomienda usar programación dinámica.

Soluciones

import Data.Matrix
 
-- 1ª definición de caminos (por recursión)
-- ----------------------------------------
 
caminos1 :: Matrix Int -> [[Int]]
caminos1 a = aux (1,1)
  where
    aux (i,j)
      | i == m           = [[a!(i,k) | k <- [j..n]]]
      | j == n           = [[a!(k,j) | k <- [i..m]]]
      | otherwise        = [a!(i,j) : cs | cs <- aux (i+1,j) ++ aux (i,j+1)]
      where m = nrows a
            n = ncols a
 
-- 2ª solución (mediante programación dinámica)
-- --------------------------------------------
 
caminos2 :: Matrix Int -> [[Int]]
caminos2 a = q ! (1,1)
  where
    q = matrix m n f
    m = nrows a
    n = ncols a
    f (i,j) | i == m    = [[a!(i,k) | k <- [j..n]]]
            | j == n    = [[a!(k,j) | k <- [i..m]]]
            | otherwise = [a!(i,j) : cs | cs <- q!(i+1,j) ++ q!(i,j+1)]  
 
-- 3ª solución
-- ===========
 
caminos3 :: Matrix Int -> [[Int]]
caminos3 a
  | m == 1 || n == 1 = [toList a]
  | otherwise = map (a ! (1,1):) (caminos3 (submatrix 2 m 1 n a) ++
                                  caminos3 (submatrix 1 m 2 n a)) 
  where m = nrows a
        n = ncols a
 
-- Comparación de eficiencia
-- -------------------------
 
--    λ> length (caminos1 (fromList 11 11 [1..]))
--    184756
--    (4.15 secs, 738,764,712 bytes)
--    λ> length (caminos2 (fromList 11 11 [1..]))
--    184756
--    (0.74 secs, 115,904,952 bytes)
--    λ> length (caminos3 (fromList 11 11 [1..]))
--    184756
--    (2.22 secs, 614,472,136 bytes)

Máxima longitud de sublistas crecientes

Definir la función

   longitudMayorSublistaCreciente :: Ord a => [a] -> Int

tal que (longitudMayorSublistaCreciente xs) es la el máximo de las longitudes de las sublistas crecientes de xs. Por ejemplo,

   λ> longitudMayorSublistaCreciente [3,2,6,4,5,1]
   3
   λ> longitudMayorSublistaCreciente [10,22,9,33,21,50,41,60,80]
   6
   λ> longitudMayorSublistaCreciente [0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15]
   6
   λ> longitudMayorSublistaCreciente [1..2000]
   2000
   λ> longitudMayorSublistaCreciente [2000,1999..1]
   1
   λ> import System.Random
   λ> xs <- sequence [randomRIO (0,10^6) | _ <- [1..10^3]]
   λ> longitudMayorSublistaCreciente2 xs
   61
   λ> longitudMayorSublistaCreciente3 xs
   61

Nota: Se puede usar programación dinámica para aumentar la eficiencia.

Soluciones

import Data.List (nub, sort)
import Data.Array (Array, (!), array, elems, listArray)
 
-- 1ª solución
-- ===========
 
longitudMayorSublistaCreciente1 :: Ord a => [a] -> Int
longitudMayorSublistaCreciente1 =
  length . head . mayoresCrecientes
 
-- (mayoresCrecientes xs) es la lista de las sublistas crecientes de xs
-- de mayor longitud. Por ejemplo, 
--    λ> mayoresCrecientes [3,2,6,4,5,1]
--    [[3,4,5],[2,4,5]]
--    λ> mayoresCrecientes [3,2,3,2,3,1]
--    [[2,3],[2,3],[2,3]]
--    λ> mayoresCrecientes [10,22,9,33,21,50,41,60,80]
--    [[10,22,33,50,60,80],[10,22,33,41,60,80]]
--    λ> mayoresCrecientes [0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15]
--    [[0,4,6,9,13,15],[0,2,6,9,13,15],[0,4,6,9,11,15],[0,2,6,9,11,15]]
mayoresCrecientes :: Ord a => [a] -> [[a]]
mayoresCrecientes xs =
  [ys | ys <- xss
      , length ys == m]
  where xss = sublistasCrecientes xs
        m   = maximum (map length xss)
 
-- (sublistasCrecientes xs) es la lista de las sublistas crecientes de
-- xs. Por ejemplo,
--    λ> sublistasCrecientes [3,2,5]
--    [[3,5],[3],[2,5],[2],[5],[]]
sublistasCrecientes :: Ord a => [a] -> [[a]]
sublistasCrecientes []  = [[]]
sublistasCrecientes (x:xs) =
  [x:ys | ys <- yss, null ys || x < head ys] ++ yss
  where yss = sublistasCrecientes xs
 
-- 2ª solución
-- ===========
 
longitudMayorSublistaCreciente2 :: Ord a => [a] -> Int
longitudMayorSublistaCreciente2 xs =
  longitudSCM xs (sort (nub xs))
 
-- (longitudSCM xs ys) es la longitud de la subsecuencia máxima de xs e
-- ys. Por ejemplo, 
--   longitudSCM "amapola" "matamoscas" == 4
--   longitudSCM "atamos" "matamoscas"  == 6
--   longitudSCM "aaa" "bbbb"           == 0
longitudSCM :: Eq a => [a] -> [a] -> Int
longitudSCM xs ys = (matrizLongitudSCM xs ys) ! (n,m)
  where n = length xs
        m = length ys
 
-- (matrizLongitudSCM xs ys) es la matriz de orden (n+1)x(m+1) (donde n
-- y m son los números de elementos de xs e ys, respectivamente) tal que
-- el valor en la posición (i,j) es la longitud de la SCM de los i
-- primeros elementos de xs y los j primeros elementos de ys. Por ejemplo,
--    λ> elems (matrizLongitudSCM "amapola" "matamoscas")
--    [0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,0,1,1,1,1,2,2,2,2,2,2,
--     0,1,2,2,2,2,2,2,2,3,3,0,1,2,2,2,2,2,2,2,3,3,0,1,2,2,2,2,3,3,3,3,3,
--     0,1,2,2,2,2,3,3,3,3,3,0,1,2,2,3,3,3,3,3,4,4]
-- Gráficamente,
--       m a t a m o s c a s
--    [0,0,0,0,0,0,0,0,0,0,0,
-- a   0,0,1,1,1,1,1,1,1,1,1,
-- m   0,1,1,1,1,2,2,2,2,2,2,
-- a   0,1,2,2,2,2,2,2,2,3,3,
-- p   0,1,2,2,2,2,2,2,2,3,3,
-- o   0,1,2,2,2,2,3,3,3,3,3,
-- l   0,1,2,2,2,2,3,3,3,3,3,
-- a   0,1,2,2,3,3,3,3,3,4,4]
matrizLongitudSCM :: Eq a => [a] -> [a] -> Array (Int,Int) Int
matrizLongitudSCM xs ys = q
  where
    n = length xs
    m = length ys
    v = listArray (1,n) xs
    w = listArray (1,m) ys
    q = array ((0,0),(n,m)) [((i,j), f i j) | i <- [0..n], j <- [0..m]]
      where f 0 _ = 0
            f _ 0 = 0
            f i j | v ! i == w ! j = 1 + q ! (i-1,j-1)
                  | otherwise      = max (q ! (i-1,j)) (q ! (i,j-1))
 
-- 3ª solución
-- ===========
 
longitudMayorSublistaCreciente3 :: Ord a => [a] -> Int
longitudMayorSublistaCreciente3 xs =
  maximum (elems (vectorlongitudMayorSublistaCreciente xs))
 
-- (vectorlongitudMayorSublistaCreciente xs) es el vector de longitud n
-- (donde n es el tamaño de xs) tal que el valor i-ésimo es la longitud
-- de la sucesión más larga que termina en el elemento i-ésimo de
-- xs. Por ejemplo,  
--    λ> vectorlongitudMayorSublistaCreciente [3,2,6,4,5,1]
--    array (1,6) [(1,1),(2,1),(3,2),(4,2),(5,3),(6,1)]
vectorlongitudMayorSublistaCreciente :: Ord a => [a] -> Array Int Int
vectorlongitudMayorSublistaCreciente xs = v
  where v = array (1,n) [(i,f i) | i <- [1..n]]
        n = length xs
        w = listArray (1,n) xs
        f 1 = 1
        f i | null ls   = 1
            | otherwise = 1 + maximum ls
          where ls = [v ! j | j <-[1..i-1], w ! j < w ! i]
 
-- Comparación de eficiencia
-- =========================
 
--    λ> longitudMayorSublistaCreciente1 [1..20]
--    20
--    (4.60 secs, 597,014,240 bytes)
--    λ> longitudMayorSublistaCreciente2 [1..20]
--    20
--    (0.03 secs, 361,384 bytes)
--    λ> longitudMayorSublistaCreciente3 [1..20]
--    20
--    (0.03 secs, 253,944 bytes)
--    
--    λ> longitudMayorSublistaCreciente2 [1..2000]
--    2000
--    (8.00 secs, 1,796,495,488 bytes)
--    λ> longitudMayorSublistaCreciente3 [1..2000]
--    2000
--    (5.12 secs, 1,137,667,496 bytes)
--    
--    λ> longitudMayorSublistaCreciente1 [1000,999..1]
--    1
--    (0.95 secs, 97,029,328 bytes)
--    λ> longitudMayorSublistaCreciente2 [1000,999..1]
--    1
--    (7.48 secs, 1,540,857,208 bytes)
--    λ> longitudMayorSublistaCreciente3 [1000,999..1]
--    1
--    (0.86 secs, 160,859,128 bytes)
--    
--    λ> longitudMayorSublistaCreciente1 (show (2^300))
--    10
--    (7.90 secs, 887,495,368 bytes)
--    λ> longitudMayorSublistaCreciente2 (show (2^300))
--    10
--    (0.04 secs, 899,152 bytes)
--    λ> longitudMayorSublistaCreciente3 (show (2^300))
--    10
--    (0.04 secs, 1,907,936 bytes)
--    
--    λ> longitudMayorSublistaCreciente2 (show (2^6000))
--    10
--    (0.06 secs, 9,950,592 bytes)
--    λ> longitudMayorSublistaCreciente3 (show (2^6000))
--    10
--    (3.46 secs, 686,929,744 bytes)
--    
--    λ> import System.Random
--    (0.00 secs, 0 bytes)
--    λ> xs <- sequence [randomRIO (0,10^6) | _ <- [1..10^3]]
--    (0.02 secs, 1,993,032 bytes)
--    λ> longitudMayorSublistaCreciente2 xs
--    61
--    (7.73 secs, 1,538,771,392 bytes)
--    λ> longitudMayorSublistaCreciente3 xs
--    61
--    (1.04 secs, 212,538,648 bytes)
--    λ> xs <- sequence [randomRIO (0,10^6) | _ <- [1..10^3]]
--    (0.03 secs, 1,993,032 bytes)
--    λ> longitudMayorSublistaCreciente2 xs
--    57
--    (7.56 secs, 1,538,573,680 bytes)
--    λ> longitudMayorSublistaCreciente3 xs
--    57
--    (1.05 secs, 212,293,984 bytes)

La sucesión de Sylvester

La sucesión de Sylvester es la sucesión que comienza en 2 y sus restantes términos se obtienen multiplicando los anteriores y sumándole 1.

Definir las funciones

   sylvester        :: Integer -> Integer
   graficaSylvester :: Integer -> Integer -> IO ()

tales que

  • (sylvester n) es el n-ésimo término de la sucesión de Sylvester. Por ejemplo,
     λ> [sylvester n | n <- [0..7]]
     [2,3,7,43,1807,3263443,10650056950807,113423713055421844361000443]
     λ> length (show (sylvester 25))
     6830085
  • (graficaSylvester d n) dibuja la gráfica de los d últimos dígitos de los n primeros términos de la sucesión de Sylvester. Por ejemplo,
    • (graficaSylvester 3 30) dibuja
      La_sucesion_de_Sylvester_(3,30)
    • (graficaSylvester 4 30) dibuja
      La_sucesion_de_Sylvester_(4,30)
    • (graficaSylvester 5 30) dibuja
      La_sucesion_de_Sylvester_(5,30)

Nota: Se puede usar programación dinámica para aumentar la eficiencia.

Soluciones

import Data.List               (genericIndex)
import Data.Array              ((!), array)
import Graphics.Gnuplot.Simple (plotList, Attribute (Key, PNG))
 
-- 1ª solución (por recursión)
-- ===========================
 
sylvester1 :: Integer -> Integer
sylvester1 0 = 2
sylvester1 n = 1 + product [sylvester1 k | k <- [0..n-1]]
 
-- 2ª solución (con programación dinámica)
-- =======================================
 
sylvester2 :: Integer -> Integer
sylvester2 n = v ! n where
  v = array (0,n) [(i,f i) | i <- [0..n]]
  f 0 = 2
  f m = 1 + product [v!k | k <- [0..m-1]]
 
-- 3ª solución
-- ===========
 
-- Observando que
--    S(n) = 1 + S(0)*S(1)*...*S(n-2)*S(n-1)
--         = 1 + (1 + S(0)*S(1)*...*S(n-2))*S(n-1) - S(n-1)
--         = 1 + S(n-1)*S(n-1) - S(n-1)
--         = 1 + S(n-1)^2 - S(n-1)
-- se obtiene la siguiente definición.
sylvester3 :: Integer -> Integer
sylvester3 0 = 2
sylvester3 n = 1 + x^2 - x
  where x = sylvester3 (n-1)
 
-- 4ª solución
-- ===========
 
sylvester4 :: Integer -> Integer
sylvester4 n = v ! n where
  v = array (0,n) [(i,f i) | i <- [0..n]]
  f 0 = 2
  f m = 1 + x^2 - x
    where x = v ! (m-1)
 
-- 5ª solución
-- ===========
 
sylvester5 :: Integer -> Integer
sylvester5 n = sucSylvester5 `genericIndex` n
 
sucSylvester5 :: [Integer]
sucSylvester5 = iterate (\x -> (x-1)*x+1) 2 
 
-- La comparación es
--    λ> length (show (sylvester1 23))
--    1707522
--    (6.03 secs, 4,090,415,704 bytes)
--    λ> length (show (sylvester2 23))
--    1707522
--    (0.33 secs, 109,477,296 bytes)
--    λ> length (show (sylvester3 23))
--    1707522
--    (0.35 secs, 109,395,136 bytes)
--    λ> length (show (sylvester4 23))
--    1707522
--    (0.33 secs, 109,402,440 bytes)
--    λ> length (show (sylvester5 23))
--    1707522
--    (0.30 secs, 108,676,256 bytes)
 
graficaSylvester :: Integer -> Integer -> IO ()
graficaSylvester d n =
  plotList [ Key Nothing
           , PNG ("La_sucesion_de_Sylvester_" ++ show (d,n) ++ ".png")
           ]
           [sylvester5 k `mod` (10^d) | k <- [0..n]]

Matriz de mínimas distancias

Definir las funciones

   minimasDistancias             :: Matrix Int -> Matrix Int
   sumaMinimaDistanciasIdentidad :: Int -> Int

tales que

  • (mininasDistancias a) es la matriz de las mínimas distancias de cada elemento de a hasta alcanzar un 1 donde un paso es un movimiento hacia la izquierda, derecha, arriba o abajo. Por ejemplo,
     λ> minimasDistancias (fromLists [[0,1,1],[0,0,1]])
     ( 1 0 0 )
     ( 2 1 0 )
     λ> minimasDistancias (fromLists [[0,0,1],[1,0,0]])
     ( 1 1 0 )
     ( 0 1 1 )
     λ> minimasDistancias (identity 5)
     ( 0 1 2 3 4 )
     ( 1 0 1 2 3 )
     ( 2 1 0 1 2 )
     ( 3 2 1 0 1 )
     ( 4 3 2 1 0 )
  • (sumaMinimaDistanciasIdentidad n) es la suma de los elementos de la matriz de las mínimas distancias correspondiente a la matriz identidad de orden n. Por ejemplo,
     sumaMinimaDistanciasIdentidad 5       ==  40
     sumaMinimaDistanciasIdentidad (10^2)  ==  333300
     sumaMinimaDistanciasIdentidad (10^4)  ==  333333330000
     sumaMinimaDistanciasIdentidad (10^6)  ==  333333333333000000

Soluciones

import Data.Matrix     
import Data.Maybe      
import Test.QuickCheck 
 
-- 1ª definición de minimasDistancias
-- ==================================
 
minimasDistancias :: Matrix Int -> Matrix Int
minimasDistancias a = 
  matrix (nrows a) (ncols a) (\(i,j) -> minimaDistancia (i,j) a) 
 
minimaDistancia :: (Int,Int) -> Matrix Int -> Int
minimaDistancia (a,b) p =
  minimum [distancia (a,b) (c,d) | (c,d) <- unos p]
 
unos :: Matrix Int -> [(Int,Int)]
unos p = [(i,j) | i <- [1..nrows p]
                , j <- [1..ncols p]
                , p ! (i,j) == 1]
 
distancia :: (Int,Int) -> (Int,Int) -> Int
distancia (a,b) (c,d) = abs (c - a) + abs (d - b)
 
-- 2ª definición de minimasDistancias
-- ==================================
 
minimasDistancias2 :: Matrix Int -> Matrix Int
minimasDistancias2 a = fmap fromJust (aux (matrizInicial a))
  where aux b | Nothing `elem` c = aux c
              | otherwise        = c
          where c = propagacion b
 
-- (matrizInicial a) es la matriz que tiene (Just 0) en los elementos de
-- a iguales a 1 y Nothing en los restantes. Por ejemplo,
--    λ> matrizInicial (fromLists [[0,0,1],[1,0,0]])
--    ( Nothing Nothing  Just 0 )
--    (  Just 0 Nothing Nothing )
matrizInicial :: Matrix Int -> Matrix (Maybe Int)
matrizInicial a = matrix m n f
  where m = nrows a
        n = ncols a
        f (i,j) | a ! (i,j) == 1 = Just 0
                | otherwise      = Nothing
 
-- (propagacion a) es la matriz obtenida cambiando los elementos Nothing
-- de a por el siguiente del mínimo de los valores de sus vecinos. Por
-- ejemplo,
--    λ> propagacion (fromLists [[0,1,1],[0,0,1]])
--    (  Just 1  Just 0  Just 0 )
--    ( Nothing  Just 1  Just 0 )
--    
--    λ> propagacion it
--    ( Just 1 Just 0 Just 0 )
--    ( Just 2 Just 1 Just 0 )
propagacion :: Matrix (Maybe Int) -> Matrix (Maybe Int)
propagacion a = matrix m n f
  where
    m = nrows a
    n = ncols a
    f (i,j) | isJust x  = x
            | otherwise = siguiente (minimo (valoresVecinos a (i,j)))
      where x = a ! (i,j)
 
-- (valoresVecinos a p) es la lista de los valores de los vecinos la
-- posición p en la matriz a. Por ejemplo,             
--    λ> a = fromList 3 4 [1..]
--    λ> a
--    (  1  2  3  4 )
--    (  5  6  7  8 )
--    (  9 10 11 12 )
--    
--    λ> valoresVecinos a (1,1)
--    [5,2]
--    λ> valoresVecinos a (2,3)
--    [3,11,6,8]
--    λ> valoresVecinos a (2,4)
--    [4,12,7]
valoresVecinos :: Matrix a -> (Int,Int) -> [a]
valoresVecinos a (i,j) = [a ! (k,l) | (k,l) <- vecinos m n (i,j)]
  where m = nrows a
        n = ncols a
 
-- (vecinos m n p) es la lista de las posiciones vecinas de la posición
-- p en la matriz a; es decir, los que se encuentran a su izquierda,
-- derecha, arriba o abajo. por ejemplo,
--    vecinos 3 4 (1,1)  ==  [(2,1),(1,2)]
--    vecinos 3 4 (2,3)  ==  [(1,3),(3,3),(2,2),(2,4)]
--    vecinos 3 4 (2,4)  ==  [(1,4),(3,4),(2,3)]
vecinos :: Int -> Int -> (Int,Int) -> [(Int,Int)]
vecinos m n (i,j) = [(i - 1,j)     | i > 1] ++
                    [(i + 1,j)     | i < m] ++
                    [(i,    j - 1) | j > 1] ++
                    [(i,    j + 1) | j < n]
 
-- (minimo xs) es el mínimo de la lista de valores opcionales xs
-- (considerando Nothing como el mayor elemento). Por ejemplo,
--    minimo [Just 3, Nothing, Just 2]  ==  Just 2
minimo :: [Maybe Int] -> Maybe Int
minimo = foldr1 minimo2
 
-- (minimo2 x y) es el mínimo de los valores opcionales x e y
-- (considerando Nothing como el mayor elemento). Por ejemplo,
--    minimo2 (Just 3) (Just 2)  ==  Just 2
--    minimo2 (Just 1) (Just 2)  ==  Just 1
--    minimo2 (Just 1) Nothing   ==  Just 1
--    minimo2 Nothing (Just 2)   ==  Just 2
--    minimo2 Nothing Nothing    ==  Nothing
minimo2 :: Maybe Int -> Maybe Int -> Maybe Int
minimo2 (Just x) (Just y) = Just (min x y)
minimo2 Nothing  (Just y) = Just y
minimo2 (Just x) Nothing  = Just x
minimo2 Nothing  Nothing  = Nothing
 
-- (siguiente x) es el siguiente elemento del opcional x (considerando
-- Nothing como el infinito). Por ejemplo, 
--    siguiente (Just 3)  ==  Just 4
--    siguiente Nothing  ==  Nothing
siguiente :: Maybe Int -> Maybe Int
siguiente (Just x) = Just (1 + x)
siguiente Nothing  = Nothing
 
-- Comparación de eficiencia
-- =========================
 
-- La comparación es
--    λ> maximum (minimasDistancias (identity 40))
--    39
--    (3.85 secs, 654,473,496 bytes)
--    λ> maximum (minimasDistancias2 (identity 40))
--    39
--    (0.50 secs, 75,079,912 bytes)
 
-- 1ª definición de sumaMinimaDistanciasIdentidad
-- ==============================================
 
sumaMinimaDistanciasIdentidad :: Int -> Int
sumaMinimaDistanciasIdentidad n =
  sum (minimasDistancias (identity n))
 
-- 2ª definición de sumaMinimaDistanciasIdentidad
-- ==============================================
 
sumaMinimaDistanciasIdentidad2 :: Int -> Int
sumaMinimaDistanciasIdentidad2 n =
  n*(n^2-1) `div` 3
 
-- Equivalencia de las definiciones de sumaMinimaDistanciasIdentidad
-- =================================================================
 
-- La propiedad es
prop_MinimaDistanciasIdentidad :: Positive Int -> Bool
prop_MinimaDistanciasIdentidad (Positive n) =
  sumaMinimaDistanciasIdentidad n == sumaMinimaDistanciasIdentidad2 n
 
-- La comprobación es
--    λ> quickCheckWith (stdArgs {maxSize=50}) prop_MinimaDistanciasIdentidad
--    +++ OK, passed 100 tests.
 
-- Comparación de eficiencia de sumaMinimaDistanciasIdentidad
-- ==========================================================
 
-- La comparación es
--    λ> sumaMinimaDistanciasIdentidad 50
--    41650
--    (0.24 secs, 149,395,744 bytes)
--    λ> sumaMinimaDistanciasIdentidad 100
--    333300
--    (1.98 secs, 1,294,676,272 bytes)
--    λ> sumaMinimaDistanciasIdentidad 200
--    2666600
--    (17.96 secs, 11,094,515,016 bytes)
--    
--    λ> sumaMinimaDistanciasIdentidad2 50
--    41650
--    (0.00 secs, 126,944 bytes)
--    λ> sumaMinimaDistanciasIdentidad2 100
--    333300
--    (0.00 secs, 126,872 bytes)
--    λ> sumaMinimaDistanciasIdentidad2 200
--    2666600
--    (0.00 secs, 131,240 bytes)
--
-- Resumidamente, el tiempo es
--
--    +-----+---------+--------+
--    |   n | 1ª def. | 2ª def |
--    +-----+---------+--------+
--    |  50 |  0.24   | 0.00   |
--    | 100 |  1.98   | 0.00   |
--    | 200 | 17.96   | 0.00   | 
--    +-----+---------+--------+

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Conjetura de Goldbach

Una forma de la conjetura de Golbach afirma que todo entero mayor que 1 se puede escribir como la suma de uno, dos o tres números primos.

Si se define el índice de Goldbach de n > 1 como la mínima cantidad de primos necesarios para que su suma sea n, entonces la conjetura de Goldbach afirma que todos los índices de Goldbach de los enteros mayores que 1 son menores que 4.

Definir las siguientes funciones

   indiceGoldbach  :: Int -> Int
   graficaGoldbach :: Int -> IO ()

tales que

  • (indiceGoldbach n) es el índice de Goldbach de n. Por ejemplo,
     indiceGoldbach 2                        ==  1
     indiceGoldbach 4                        ==  2
     indiceGoldbach 27                       ==  3
     sum (map indiceGoldbach [2..5000])      ==  10619
     maximum (map indiceGoldbach [2..5000])  ==  3
  • (graficaGoldbach n) dibuja la gráfica de los índices de Goldbach de los números entre 2 y n. Por ejemplo, (graficaGoldbach 150) dibuja
    Conjetura_de_Goldbach_150

Comprobar con QuickCheck la conjetura de Goldbach anterior.

Soluciones

import Data.Array
import Data.Numbers.Primes
import Graphics.Gnuplot.Simple
import Test.QuickCheck
 
 
-- 1ª definición
-- =============
 
indiceGoldbach :: Int -> Int
indiceGoldbach n =
  minimum (map length (particiones n))
 
particiones :: Int -> [[Int]]
particiones n = v ! n where
  v = array (0,n) [(i,f i) | i <- [0..n]]
    where f 0 = [[]]
          f m = [x:y | x <- xs, 
                       y <- v ! (m-x), 
                       [x] >= take 1 y]
            where xs = reverse (takeWhile (<= m) primes)
 
-- 2ª definición
-- =============
 
indiceGoldbach2 :: Int -> Int
indiceGoldbach2 x =
  head [n | n <- [1..], esSumaDe x n]
 
-- (esSumaDe x n) se verifica si x se puede escribir como la suma de n
-- primos. Por ejemplo,
--    esSumaDe 2  1  ==  True
--    esSumaDe 4  1  ==  False
--    esSumaDe 4  2  ==  True
--    esSumaDe 27 2  ==  False
--    esSumaDe 27 3  ==  True
esSumaDe :: Int -> Int -> Bool
esSumaDe x 1 = isPrime x
esSumaDe x n = or [esSumaDe (x-p) (n-1) | p <- takeWhile (<= x) primes]
 
-- 3ª definición
-- =============
 
indiceGoldbach3 :: Int -> Int
indiceGoldbach3 x =
  head [n | n <- [1..], esSumaDe3 x n]
 
esSumaDe3 :: Int -> Int -> Bool
esSumaDe3 x n = a ! (x,n) where
  a = array ((2,1),(x,9)) [((i,j),f i j) | i <- [2..x], j <- [1..9]]
  f i 1 = isPrime i
  f i j = or [a!(i-k,j-1) | k <- takeWhile (<= i) primes]
 
-- 4ª definición
-- =============
 
indiceGoldbach4 :: Int -> Int
indiceGoldbach4 n = v ! n where
  v = array (2,n) [(i,f i) | i <- [2..n]]
  f i | isPrime i = 1
      | otherwise = 1 + minimum [v!(i-p) | p <- takeWhile (< (i-1)) primes]
 
-- Comparación de eficiencia
-- =========================
 
--    λ> sum (map indiceGoldbach [2..80])
--    142
--    (2.66 secs, 1,194,330,496 bytes)
--    λ> sum (map indiceGoldbach2 [2..80])
--    142
--    (0.01 secs, 1,689,944 bytes)
--    λ> sum (map indiceGoldbach3 [2..80])
--    142
--    (0.03 secs, 27,319,296 bytes)
--    λ> sum (map indiceGoldbach4 [2..80])
--    142
--    (0.03 secs, 47,823,656 bytes)
--    
--    λ> sum (map indiceGoldbach2 [2..1000])
--    2030
--    (0.10 secs, 200,140,264 bytes)
--    λ> sum (map indiceGoldbach3 [2..1000])
--    2030
--    (3.10 secs, 4,687,467,664 bytes)
 
-- Gráfica
-- =======
 
graficaGoldbach :: Int -> IO ()
graficaGoldbach n =
  plotList [ Key Nothing
           , XRange (2,fromIntegral n)
           , PNG ("Conjetura_de_Goldbach_" ++ show n ++ ".png")
           ]
           [indiceGoldbach2 k | k <- [2..n]]
 
-- Comprobación de la conjetura de Goldbach
-- ========================================
 
-- La propiedad es
prop_Goldbach :: Int -> Property
prop_Goldbach x =
  x >= 2 ==> indiceGoldbach2 x < 4
 
-- La comprobación es
--    λ> quickCheck prop_Goldbach
--    +++ OK, passed 100 tests.

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Pensamiento

“La diferencia entre los matemáticos y los físicos es que después de que los físicos prueban un gran resultado piensan que es fantástico, pero después de que los matemáticos prueban un gran resultado piensan que es trivial.”

Lucien Szpiro.