Producto cartesiano de una familia de conjuntos

Definir la función

tal que (producto xss) es el producto cartesiano de los conjuntos xss. Por ejemplo,

Comprobar con QuickCheck que para toda lista de listas de números enteros, xss, se verifica que el número de elementos de (producto xss) es igual al producto de los números de elementos de cada una de las listas de xss.

Soluciones

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Mayor producto de las ramas de un árbol

Los árboles se pueden representar mediante el siguiente tipo de datos

Por ejemplo, los árboles

se representan por

Definir la función

tal que (mayorProducto a) es el mayor producto de las ramas del árbol a. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Cadenas de divisores

Una cadena de divisores de un número n es una lista donde cada elemento es un divisor de su siguiente elemento en la lista. Por ejemplo, las cadenas de divisores de 12 son [2,4,12], [2,6,12], [2,12], [3,6,12], [3,12], [4,12], [6,12] y [12].

Definir la función

tal que (cadenasDivisores n) es la lista de las cadenas de divisores de n. Por ejemplo,

Soluciones

Reparto de escaños por la ley d’Hont

El sistema D’Hondt es una fórmula creada por Victor d’Hondt, que permite obtener el número de cargos electos asignados a las candidaturas, en proporción a los votos conseguidos.

Tras el recuento de los votos, se calcula una serie de divisores para cada partido. La fórmula de los divisores es V/N, donde V representa el número total de votos recibidos por el partido, y N representa cada uno de los números enteros desde 1 hasta el número de cargos electos de la circunscripción objeto de escrutinio. Una vez realizadas las divisiones de los votos de cada partido por cada uno de los divisores desde 1 hasta N, la asignación de cargos electos se hace ordenando los cocientes de las divisiones de mayor a menor y asignando a cada uno un escaño hasta que éstos se agoten

Definir la función

tal que (reparto n vs) es la lista de los pares formados por los números de los partidos y el número de escaño que les corresponden al repartir n escaños en función de la lista de sus votos. Por ejemplo,

es decir, en el primer ejemplo,

  • al 1º partido (que obtuvo 340000 votos) le corresponden 3 escaños,
  • al 2º partido (que obtuvo 280000 votos) le corresponden 3 escaños,
  • al 3º partido (que obtuvo 160000 votos) le corresponden 1 escaño.

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Suma de intervalos

Los intervalos se pueden representar por pares de enteros (a,b) con a < b. Los elementos del intervalo (2,5) son 2, 3, 4 y 5; por tanto, su longitud es 4. Para calcular la suma de los longitudes de una lista de intervalos hay que tener en cuenta que si hay intervalos superpuestos sus elementos deben de contarse sólo una vez. Por ejemplo, la suma de los intervalos de [(1,4),(7,10),(3,5)] es 7 ya que, como los intervalos (1,4) y (3,5) se solapan, los podemos ver como el intervalo (1,5) que tiene una longitud de 4.

Definir la función

tal que (sumaIntervalos xs) es la suma de las longitudes de los intervalos de xs contando los superpuestos sólo una vez. Por ejemplo,

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Pensamiento

«Si la gente no cree que las matemáticas son simples, es sólo porque no se dan cuenta de lo complicada que es la vida.»

John von Neumann.

Átomos de FNC (fórmulas en forma normal conjuntiva)

Nota: En este ejercicio usaremos las mismas notaciones que en el anterior importando el módulo Evaluacion_de_FNC.

Definir las siguientes funciones

tales que

  • (atomosClausula c) es el conjunto de los átomos de la cláusula c. Por ejemplo,

  • (atomosFNC f) es el conjunto de los átomos de la FNC f. Por ejemplo,

Nota: Escribir la solución en el módulo Atomos_de_FNC para poderlo usar en los siguientes ejercicios.

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang=»haskell»> y otra con </pre>

Pensamiento

«La esencia de las matemáticas es su libertad.»

Georg Cantor.

Números sin 2 en base 3

Definir la sucesión

cuyos términos son los números cuya representación en base 3 no contiene el dígito 2. Por ejemplo,

Se observa que

  • 12 está en la sucesión ya que su representación en base 3 es 110 (porque 1·3² + 1·3¹ + 0.3⁰ = 12) y no contiene a 2.
  • 14 no está en la sucesión ya que su representación en base 3 es 112 (porque 1·3² + 1·3¹ + 2.3⁰ = 14) y contiene a 2.

Comprobar con QuickCheck que las sucesiones numerosSin2EnBase3 y sucesionSin3enPA (del ejercicio anterior) son iguales; es decir, para todo número natural n, el n-ésimo término de numerosSin2EnBase3 es igual al n-ésimo término de sucesionSin3enPA.

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang=»haskell»> y otra con </pre>

Pensamiento

O que yo pueda asesinar un día
en mi alma, al despertar, esa persona
que me hizo el mundo mientras yo dormía.

Antonio Machado

Posiciones de conjuntos finitos de naturales

En un ejercicio anterior se mostró que los conjuntos finitos de números naturales se pueden enumerar como sigue

en la que los elementos están ordenados de manera decreciente.

Además, se definió la constante

tal que sus elementos son los conjuntos de los números naturales con la ordenación descrita anteriormente. Por ejemplo,

Definir la función

tal que (posicion xs) es la posición del conjunto finito de números naturales xs, representado por una lista decreciente, en enumeracionCFN. Por ejemplo,

Comprobar con QuickCheck que para todo número natural n,

Soluciones

Pensamiento

¡Volar sin alas donde todo es cielo!

Antonio Machado

Conjuntos con más sumas que restas

Dado un conjunto de números naturales, por ejemplo A = {0, 2, 3, 4}, calculamos las sumas de todos los pares de elementos de A. Como A tiene 4 elementos hay 16 pares, pero no todas sus sumas son distintas. En este caso solo hay 8 sumas distintas: {0, 2, 3, 4, 5, 6, 7, 8}. Procediendo análogamente hay 9 diferencias distinatas entre los pares de A: {-4, -3, -2, -1, 0, 1, 2, 3, 4}.

Experimentando con más conjuntos, se puede conjeturar que el número de restas es mayor que el de sumas y argumentar que que mientras que con dos números distintos sólo se produce una suma distints sin embargo se producen dos restas distintas. Por ejemplo, con 5 y 7 sólo se produce una suma (ya que 5+7 y 7+5 ambos dan 12) pero dos restas (ya que 5-7 y 7-5 dan -2 y 2, respectivamente).

Sin embargo, la conjetura es falsa. Un contraejemplo en el conjunto {0, 2, 3, 4, 7, 11, 12, 14}, que tiene 26 sumas distintas con sus pares de elementos pero sólo 25 restas.

Los conjuntos con más sumas distintas con sus pares de elementos que restas se llaman conjuntos MSQR (por «más sumas que restas»).

El objetivo de este ejercicio es calcular los conjuntos MSQR.

Definir las funciones

tales que

  • (tieneMSQR xs) se verifica si el conjunto xs tiene más sumas que restas. Por ejemplo,

  • conjuntosMSQR es la lista de los conjuntos MSQR. Por ejemplo,

Soluciones

Pensamiento

¡Qué fácil es volar, qué fácil es!
Todo consiste en no dejar que el suelo
se acerque a nuestros pies.

Antonio Machado

Enumeración de conjuntos finitos de naturales

Los conjuntos finitos de números naturales se pueden enumerar como sigue

en la que los elementos están ordenados de manera decreciente.

Definir la constante

tal que sus elementos son los conjuntos de los números naturales con la ordenación descrita anteriormente. Por ejemplo,

Comprobar con QuickCheck que

  • si (xs,ys) es un par de elementos consecutivos de enumeracionCFN, entonces xs < ys;
  • todo conjunto finito de números naturales, representado por una lista decreciente, está en enumeracionCFN.

Soluciones

Pensamiento

Junto al agua fría,
en la senda clara,
sombra dará algún día,
ese arbolillo en que nadie repara.

Antonio Machado

Mayor producto de n dígitos consecutivos de un número

Definir la función

tal que (mayorProducto n x) es el mayor producto de n dígitos consecutivos del número x (suponiendo que x tiene al menos n dígitos). Por ejemplo,

Nota: Este ejercicio está basado en el problema 8 del Proyecto Euler

Soluciones

Pensamiento

«El control de la complejidad es la esencia de la programación.» ~ B.W. Kernigan

Mayor producto de n dígitos consecutivos de un número

Definir la función

tal que (mayorProducto n x) es el mayor producto de n dígitos consecutivos del número x (suponiendo que x tiene al menos n dígitos). Por ejemplo,

Soluciones

Pensamiento

A las palabras de amor
les sienta bien su poquito
de exageración.

Antonio Machado

Máxima suma de los segmentos

Un segmento de una lista xs es una sublista de xs formada por elementos consecutivos en la lista. El problema de la máxima suma de segmentos consiste en dada una lista de números enteros calcular el máximo de las sumas de todos los segmentos de la lista. Por ejemplo, para la lista [-1,2,-3,5,-2,1,3,-2,-2,-3,6] la máxima suma de segmentos es 7 que es la suma del segmento [5,-2,1,3] y para la lista [-1,-2,-3] es 0 que es la suma de la lista vacía.

Definir la función

tal que (mss xs) es la máxima suma de los segmentos de xs. Por ejemplo,

Soluciones

Pensamiento

Nubes, sol, prado verde y caserío
en la loma, revueltos. Primavera
puso en el aire de este campo frío
la gracia de sus chopos de ribera.

Antonio Machado

Reparto de escaños por la ley d’Hont

El sistema D’Hondt es una fórmula creada por Victor d’Hondt, que permite obtener el número de cargos electos asignados a las candidaturas, en proporción a los votos conseguidos.

Tras el recuento de los votos, se calcula una serie de divisores para cada partido. La fórmula de los divisores es V/N, donde V representa el número total de votos recibidos por el partido, y N representa cada uno de los números enteros desde 1 hasta el número de cargos electos de la circunscripción objeto de escrutinio. Una vez realizadas las divisiones de los votos de cada partido por cada uno de los divisores desde 1 hasta N, la asignación de cargos electos se hace ordenando los cocientes de las divisiones de mayor a menor y asignando a cada uno un escaño hasta que éstos se agoten

Definir la función

tal que (reparto n vs) es la lista de los pares formados por los números de los partidos y el número de escaño que les corresponden al repartir n escaños en función de la lista de sus votos. Por ejemplo,

es decir, en el primer ejemplo,

  • al 1º partido (que obtuvo 340000 votos) le corresponden 3 escaños,
  • al 2º partido (que obtuvo 280000 votos) le corresponden 3 escaños,
  • al 3º partido (que obtuvo 160000 votos) le corresponden 1 escaño.

Soluciones

Pensamiento

Sus cantares llevan
agua de remanso,
que parece quieta.
Y que no lo está;
mas no tiene prisa
por ir a la mar.

Antonio Machado

Números en una cadena

Definir la función

tal que (numeros cs) es la lista de los números enteros no negativos de la cadena cs. Por ejemplo,

Soluciones

Pensamiento

Tu profecía, poeta.
— Mañana hablarán los mudos:
el corazón y la piedra.

Antonio Machado

Árboles cuyas ramas cumplen una propiedad

Los árboles se pueden representar mediante el siguiente tipo de dato

Por ejemplo, los árboles

se representan por

Definir la función

tal que (todasDesdeAlguno p ar) se verifica si para toda rama existe un elemento a partir del cual todos los elementos de la rama verifican la propiedad p. Por ejemplo,

Soluciones

Pensamiento

Por dar al viento trabajo,
cosía con hilo doble
las hojas secas del árbol.

Antonio Machado

Caminos minimales en un árbol numérico

En la librería Data.Tree se definen los tipos de árboles y bosques como sigue

Se pueden definir árboles. Por ejemplo,

Y se pueden dibujar con la función drawTree. Por ejemplo,

Los mayores divisores de un número x son los divisores u tales que u > 1 y existe un v tal que 1 < v < u y u.v = x. Por ejemplo, los mayores divisores de 24 son 12, 8 y 6.

El árbol de los predecesores y mayores divisores de un número x es el árbol cuya raíz es x y los sucesores de cada nodo y > 1 es el conjunto formado por y-1 junto con los mayores divisores de y. Los nodos con valor 1 no tienen sucesores. Por ejemplo, el árbol de los predecesores y mayores divisores del número 6 es

Definir las siguientes funciones

tales que
+ (mayoresDivisores x) es la lista de los mayores divisores de x. Por ejemplo,

  • (arbol x) es el árbol de los predecesores y mayores divisores del número x. Por ejemplo,

  • (caminos x) es la lista de los caminos en el árbol de los predecesores y mayores divisores del número x. Por ejemplo,

  • (caminosMinimales x) es la lista de los caminos en de menor longitud en el árbol de los predecesores y mayores divisores del número x. Por ejemplo,

Soluciones

Pensamiento

Tras el vivir y el soñar,
está lo que más importa:
despertar.

Antonio Machado

Mezcla de listas

Definir la función

tal que (mezcla xss) es la lista tomando sucesivamente los elementos de xss en la misma posición. Cuando una de las listas de xss es vacía, se continua con las restantes. por ejemplo,

Soluciones

Pensamiento

Cuatro cosas tiene el hombre
que no sirven en la mar:
ancla, gobernalle y remos,
y miedo de naufragar.

Antonio Machado

Dígitos en las posiciones pares de cuadrados

Definir las funciones

tales que

  • (digitosPosParesCuadrado n) es el par formados por los dígitos de n² en la posiciones pares y por el número de dígitos de n². Por ejemplo,

  • (invDigitosPosParesCuadrado (xs,k)) es la lista de los números n tales que xs es la lista de los dígitos de n² en la posiciones pares y k es el número de dígitos de n². Por ejemplo,