Reiteración de suma de consecutivos

La reiteración de la suma de los elementos consecutivos de la lista [1,5,3] es 14 como se explica en el siguiente diagrama

y la de la lista [1,5,3,4] es 29 como se explica en el siguiente diagrama

Definir la función

tal que (sumaReiterada xs) es la suma reiterada de los elementos consecutivos de la lista no vacía xs. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

Suma de una fila del triángulo de los impares

Se condidera el siguiente triángulo de números impares

Definir la función

tal que (sumaFilaTrianguloImpares n) es la suma de la n-ésima fila del triángulo de los números impares. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

Duplicación de cada elemento

Definir la función

tal que (duplicaElementos xs) es la lista obtenida duplicando cada elemento de xs. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

Sistema factorádico de numeración

El sistema factorádico es un sistema numérico basado en factoriales en el que el n-ésimo dígito, empezando desde la derecha, debe ser multiplicado por n! Por ejemplo, el número «341010» en el sistema factorádico es 463 en el sistema decimal ya que

En este sistema numérico, el dígito de más a la derecha es siempre 0, el segundo 0 o 1, el tercero 0,1 o 2 y así sucesivamente.

Con los dígitos del 0 al 9 el mayor número que podemos codificar es el 10!-1 = 3628799. En cambio, si lo ampliamos con las letras A a Z podemos codificar hasta 36!-1 = 37199332678990121746799944815083519999999910.

Definir las funciones

tales que

  • (factoradicoAdecimal cs) es el número decimal correspondiente al número factorádico cs. Por ejemplo,

  • (decimalAfactoradico n) es el número factorádico correpondiente al número decimal n. Por ejemplo,

Comprobar con QuickCheck que, para cualquier entero positivo n,

Soluciones

El código se encuentra en GitHub.

Número como suma de sus dígitos

El número 23 se puede escribir de 4 formas como suma de sus dígitos

La de menor número de sumando es la última, que tiene 8 sumandos.

Definir las funciones

tales que

  • (minimoSumandosDigitos n) es el menor número de dígitos de n cuya suma es n. Por ejemplo,

  • (graficaMinimoSumandosDigitos n) dibuja la gráfica de (minimoSumandosDigitos k) par los k primeros números naturales. Por ejemplo, (graficaMinimoSumandosDigitos 300) dibuja

Soluciones

Cambio con el menor número de monedas

El problema del cambio con el menor número de monedas consiste en, dada una lista ms de tipos de monedas (con infinitas monedas de cada tipo) y una cantidad objetivo x, calcular el menor número de monedas de ms cuya suma es x. Por ejemplo, con monedas de 1, 3 y 4 céntimos se puede obtener 6 céntimos de 4 formas

El menor número de monedas que se necesita es 2. En cambio, con monedas de 2, 5 y 10 es imposible obtener 3.

Definir

tal que (monedas ms x) es el menor número de monedas de ms cuya suma es x, si es posible obtener dicha suma y es Nothing en caso contrario. Por ejemplo,

Soluciones

Caminos en un grafo

Definir las funciones

tales que

  • (grafo as) es el grafo no dirigido definido cuyas aristas son as. Por ejemplo,

  • (caminos g a b) es la lista los caminos en el grafo g desde a hasta b sin pasar dos veces por el mismo nodo. Por ejemplo,

Soluciones

Sin ceros consecutivos

Definir la función

tal que (sinDobleCero n) es la lista de las listas de longitud n formadas por el 0 y el 1 tales que no contiene dos ceros consecutivos. Por ejemplo,

Soluciones

Cadenas de primos complementarios

El complemento de un número positivo x se calcula por el siguiente procedimiento:

  • si x es mayor que 9, se toma cada dígito por su valor posicional y se resta del mayor los otro dígitos. Por ejemplo, el complemento de 1448 es 1000 – 400 – 40 – 8 = 552. Para
  • si x es menor que 10, su complemento es x.

Definir las funciones

tales que

  • (cadena x) es la cadena de primos a partir de x tal que cada uno es el complemento del anterior. Por ejemplo,

  • (conCadena n) es la lista de números cuyas cadenas tienen n elementos. Por ejemplo,

Soluciones

Las sucesiones de Loomis

La sucesión de Loomis generada por un número entero positivo x es la sucesión cuyos términos se definen por

  • f(0) es x
  • f(n) es la suma de f(n-1) y el producto de los dígitos no nulos de f(n-1)

Los primeros términos de las primeras sucesiones de Loomis son

  • Generada por 1: 1, 2, 4, 8, 16, 22, 26, 38, 62, 74, 102, 104, 108, 116, 122, …
  • Generada por 2: 2, 4, 8, 16, 22, 26, 38, 62, 74, 102, 104, 108, 116, 122, 126, …
  • Generada por 3: 3, 6, 12, 14, 18, 26, 38, 62, 74, 102, 104, 108, 116, 122, 126, …
  • Generada por 4: 4, 8, 16, 22, 26, 38, 62, 74, 102, 104, 108, 116, 122, 126, 138, …
  • Generada por 5: 5, 10, 11, 12, 14, 18, 26, 38, 62, 74, 102, 104, 108, 116, 122, …

Se observa que a partir de un término todas coinciden con la generada por 1. Dicho término se llama el punto de convergencia. Por ejemplo,

  • la generada por 2 converge a 2
  • la generada por 3 converge a 26
  • la generada por 4 converge a 4
  • la generada por 5 converge a 26

Definir las siguientes funciones

tales que

  • (sucLoomis x) es la sucesión de Loomis generada por x. Por ejemplo,

  • (convergencia x) es el término de convergencia de la sucesioń de Loomis generada por x xon la geerada por 1. Por ejemplo,

  • (graficaConvergencia xs) dibuja la gráfica de los términos de convergencia de las sucesiones de Loomis generadas por los elementos de xs. Por ejemplo, (graficaConvergencia ([1..50]) dibuja
    Las_sucesiones_de_Loomis_1
    y graficaConvergencia ([1..148] \ [63,81,89,137]) dibuja
    Las_sucesiones_de_Loomis_2

Soluciones