Juego de bloques con letras

Para el juego de los bloques se dispone de un conjunto de bloques con una letra en cada una de sus dos caras. El objetivo del juego consiste en formar palabras sin que se pueda usar un bloque más de una vez y sin diferenciar mayúsculas de minúsculas. Por ejemplo, si se tiene tres bloques de forma que el 1º tiene las letras A y B, el 2ª la N y la O y el 3º la O y la A entonces se puede obtener la palabra ANA de dos formas: una con los bloques 1, 2 y 3 y otra con los 3, 2 y 1.

Definir la función

tal que (soluciones bs cs) es la lista de las soluciones del juego de los bloque usando los bloques bs (cada bloque es una cadena de dos letras mayúsculas) para formar la palabra cs. Por ejemplo,

Soluciones

Densidad de números no monótonos

Un número entero positivo se dice que es

  • creciente si cada uno de sus dígitos es menor o igual que el que está a su derecha; por ejemplo, 134479.
  • decreciente si cada uno de sus dígitos es menor o igual que el que está a su derecha; por ejemplo, 664210.
  • no monótono si no es creciente ni decreciente; por ejemplo, 155369.

Para cada entero positivo n, la densidad números no monótonos hasta n es el cociente entre la cantidad de n números no monótonos entre menores o iguales que n y el número n. Por ejemplo, hasta 150 hay 19 números no monótonos (101, 102, 103, 104, 105, 106, 107, 108, 109, 120, 121, 130, 131, 132, 140, 141, 142, 143 y 150); por tanto, la densidad hasta 150 es 19/150 = 0.12666667

Definir las siguientes funciones

tales que

  • (densidad n) es la densidad de números no monótonos hasta n. Por ejemplo,

  • (menorConDensidadMayor x) es el menor número n tal que la densidad de números no monótonos hasta n es mayor o igual que x. Por ejemplo,

Soluciones

Cadenas de divisores

Una cadena de divisores de un número n es una lista donde cada elemento es un divisor de su siguiente elemento en la lista. Por ejemplo, las cadenas de divisores de 12 son [2,4,12], [2,6,12], [2,12], [3,6,12], [3,12], [4,12], [6,12] y [12].

Definir la función

tal que (cadenasDivisores n) es la lista de las cadenas de divisores de n. Por ejemplo,

Soluciones

Referencias

Período de una lista

El período de una lista xs es la lista más corta ys tal que xs se puede obtener concatenando varias veces la lista ys. Por ejemplo, el período «abababab» es «ab» ya que «abababab» se obtiene repitiendo tres veces la lista «ab».

Definir la función

tal que (periodo xs) es el período de xs. Por ejemplo,

Soluciones

Mínimo número de cambios para igualar una lista

Definir la función

tal que (nMinimoCambios xs) es el menor número de elementos de xs que hay que cambiar para que todos sean iguales. Por ejemplo,

En el primer ejemplo, los elementos que hay que cambiar son 5, 7, 9 y 6.

Soluciones

Productos simultáneos de dos y tres números consecutivos

Definir la función

tal que (productos n x) es las listas de n elementos consecutivos cuyo producto es x. Por ejemplo,

Comprobar con QuickCheck que si n > 0 y x > 0, entonces

Usando productos, definir la función

cuyos elementos son los números naturales (no nulos) que pueden expresarse simultáneamente como producto de dos y tres números consecutivos. Por ejemplo,

Nota. Según demostró Mordell en 1962, productosDe2y3consecutivos sólo tiene dos elementos.

Soluciones

Conflictos de horarios

Los horarios de los cursos se pueden representar mediante matrices donde las filas indican los curso, las columnas las horas de clase y el valor correspondiente al curso i y la hora j es verdadero indica que i tiene clase a la hora j.

En Haskell, podemos usar la matrices de la librería Data.Matrix y definir el tipo de los horarios por

Un ejemplo de horario es

en el que el 1º curso tiene clase a la 1ª y 2ª hora, el 2º a la 2ª y a la 3ª y el 3º a la 3ª y a la 4ª.

Definir la función

tal que (cursosConflictivos h is) se verifica para si los cursos de la lista is hay alguna hora en la que más de uno tiene clase a dicha hora. Por ejemplo,

Soluciones

Mínima diferencia entre elementos de una lista

Definir la función

tal que (minimaDiferencia xs) es el menor valor absoluto de las diferencias entre todos los pares de elementos de xs (que se supone que tiene al menos 2 elementos). Por ejemplo,

En el primer ejemplo la menor diferencia es 1 y se da entre los elementos 19 y 18; en el 2ª es 4 entre los elementos 5 y 9 y en la 3ª es 0 porque el elemento 5 está repetido.

Soluciones

Números como sumas de primos consecutivos

En el artículo Integers as a sum of consecutive primes in 2,3,4,.. ways se presentan números que se pueden escribir como sumas de primos consecutivos de varias formas. Por ejemplo, el 41 se puede escribir de dos formas distintas

el 240 se puede escribir de tres formas

y el 311 se puede escribir de 4 formas

Definir la función

tal que (sumas x) es la lista de las formas de escribir x como suma
de dos o más números primos consecutivos. Por ejemplo,

Soluciones

Primos permutables

Un primo permutable es un número primo tal que todos los números obtenidos permutando sus cifras son primos. Por ejemplo, 337 es un primo permutable ya que 337, 373 y 733 son primos.

Definir las funciones

tales que

  • (esPrimoPermutable x) se verifica si x es un primo permutable. Por ejemplo,

  • primosPermutables es la lista de los primos permutables. Por ejemplo,

Soluciones

Referencias

Números de Lucas

Los números de Lucas son los elementos de la sucesión L(n) definida por

Los primeros números de Lucas son

Definir las funciones

tales que

  • (nLucas n) es el n-ésimo número de Lucas. Por ejemplo,

  • lucas es la lista de los números de Lucas. Por ejemplo,

Soluciones

Soluciones en Maxima

La evaluación de los ejemplos es

Inverso multiplicativo modular

El inverso multiplicativo modular de un entero n módulo p es el número m, entre 1 y p-1, tal que

Por ejemplo, el inverso multiplicativo de 2 módulo 5 es 3, ya que 1 <= 3 <= 4 y 2×3 = 1 (mod 5).

El inverso multipicativo de n módulo p existe si y sólo si n y p son coprimos; es decir, si mcd(n,p) = 1.

Definir la función

tal que (invMod n p) es justo el inverso multiplicativo de n módulo p, si existe y Nothing en caso contrario. Por ejemplo,

Soluciones

Solución en Maxima

La evaluación de los ejemplos es

Referencia

Factorial generalizado

El factorial generalizado de x respecto de y y z es el producto x(x-z)(x-2z) … (x-(y-1)z). Por ejemplo, el factorial generalizado de 7 respecto de 3 y 2 es 7x5x3 = 105 y el de 7 respecto de 2 y 3 es 7×4 = 28

Definir la función

tal que (factGen x y z) es el factorial generalizado de x respecto de y y z. Por ejemplo,

Nota: Se supone que x, y y z son positivos y z < x.

Comprobar con QuickCheck que (factGen x x 1) es el factorial de x.

Soluciones

Solución en Maxima

Representación decimal de números racionales

Los números decimales se representan por ternas, donde el primer elemento es la parte entera, el segundo es el anteperíodo y el tercero es el período. Por ejemplo,

Su tipo es

Los números racionales se representan por un par de enteros, donde el primer elemento es el numerador y el segundo el denominador. Por ejemplo, el número 2/3 se representa por (2,3). Su tipo es

Definir las funciones

tales que

  • (decimal r) es la representación decimal del número racional r. Por ejemplo,

  • (racional d) es el número racional cuya representación decimal es d. Por ejemplo,

Con la función decimal se puede calcular los períodos de los números racionales. Por ejemplo,

Comprobar con QuickCheck si las funciones decimal y racional son inversas.

Soluciones

Posiciones de máximos locales

Los vectores se definen usando tablas como sigue:

Un elemento de un vector es un máximo local si no tiene ningún elemento adyacente mayor o igual que él.

Definir la función

tal que (posMaxVec p) devuelve las posiciones del vector p en las que p tiene un máximo local. Por ejemplo,

Soluciones

Máxima suma de elementos consecutivos

Definir la función

tal que (sumaMaxima xs) es el valor máximo de la suma de elementos consecutivos de la lista xs. Por ejemplo,

Comprobar con QuickCheck que

Soluciones

Primo suma de dos cuadrados

Definir la sucesión

cuyos elementos son los números primos que se pueden escribir como sumas de dos cuadrados. Por ejemplo,

En el ejemplo anterior,

  • 13 está en la sucesión porque es primo y 13 = 2²+3².
  • 11 no está en la sucesión porque no se puede escribir como suma de dos cuadrados (en efecto, 11-1=10, 11-2²=7 y 11-3²=2 no son cuadrados).
  • 20 no está en la sucesión porque, aunque es suma de dos cuadrados (20=4²+2²), no es primo.

Soluciones

Referencias

Máxima suma en una matriz

Las matrices puede representarse mediante tablas cuyos índices son pares de números naturales:

Definir la función

tal que (maximaSuma p) es el máximo de las sumas de las listas de elementos de la matriz p tales que cada elemento pertenece sólo a una fila y a una columna. Por ejemplo,

ya que las selecciones, y sus sumas, de la matriz

son

Hay dos selecciones con máxima suma: [2,8,7] y [3,8,6].

Soluciones

Paridad del número de divisores

Definir la función

tal que (nDivisoresPar n) se verifica si n tiene un número par de divisores. Por ejemplo,

Soluciones

Solución en Maxima

Elemento ausente

Sea xs una lista y n su longitud. Se dice que xs es casi completa si sus elementos son los números enteros entre 0 y n excepto uno. Por ejemplo, la lista [3,0,1] es casi completa.

Definir la función

tal que (ausente xs) es el único entero (entre 0 y la longitud de xs) que no pertenece a la lista casi completa xs. Por ejemplo,

Soluciones

Menor no expresable como suma

Definir la función

tal que (menorNoSuma xs) es el menor número que no se puede escribir como suma de un subconjunto de xs, donde se supone que xs es un conjunto de números enteros positivos. Por ejemplo,

Comprobar con QuickCheck que para todo n,

Soluciones

Número de islas rectangulares de una matriz

En este problema se consideran matrices cuyos elementos son 0 y 1. Los valores 1 aparecen en forma de islas rectangulares separadas por 0 de forma que como máximo las islas son diagonalmente adyacentes. Por ejemplo,

Definir la función

tal que (numeroDeIslas p) es el número de islas de la matriz p. Por ejemplo,

Soluciones

Índices de números de Fibonacci

Los primeros términos de la sucesión de Fibonacci son

Se observa que el 6º término de la sucesión (comenzando a contar en 0) es el número 8.

Definir la función

tal que (indiceFib x) es justo el número n si x es el n-ésimo términos de la sucesión de Fibonacci o Nothing en el caso de que x no pertenezca a la sucesión. Por ejemplo,

Soluciones

En Maxima

Integración por el método de los rectángulos

La integral definida de una función f entre los límites a y b puede calcularse mediante la regla del rectángulo usando la fórmula

con a+nh+h/2 ≤ b < a+(n+1)h+h/2 y usando valores pequeños para h.

Definir la función

tal que (integral a b f h) es el valor de dicha expresión. Por ejemplo, el cálculo de la integral de f(x) = x^3 entre 0 y 1, con paso 0.01, es

Otros ejemplos son

Nota: Definir la función también en Maxima. Por ejemplo,

Soluciones

Solución en Maxima

Nota: En Maxima esta definida la función integrate para calcular integrales definidas. Por ejemplo,

Sumas de potencias de 3 primos

Los primeros números de la forma p²+q³+r⁴, con p, q y r primos son

Definir la sucesión

cuyos elementos son los números que se pueden escribir de la forma p²+q³+r⁴, con p, q y r primos. Por ejemplo,

Soluciones

Múltiplos con ceros y unos

Se observa que todos los primeros números naturales tienen al menos un múltiplo no nulo que está formado solamente por ceros y unos. Por ejemplo, 1×10=10, 2×5=10, 3×37=111, 4×25=100, 5×2=10, 6×185=1110; 7×143=1001; 8X125=1000; 9×12345679=111111111.

Definir la función

tal que (multiplosCon1y0 n) es la lista de los múltiplos de n cuyos dígitos son 1 ó 0. Por ejemplo,

Comprobar con QuickCheck que todo entero positivo tiene algún múltiplo cuyos dígitos son 1 ó 0.

Soluciones

Dígitos en la factorización

El enunciado del problema 652 de Números y algo más es el siguiente

Si factorizamos los factoriales de un número en función de sus divisores primos y sus potencias, ¿Cuál es el menor número n tal que entre los factores primos y los exponentes de estos, n! contiene los dígitos del cero al nueve? Por ejemplo

  • 6! = 2⁴x3²x5¹, le faltan los dígitos 0,6,7,8 y 9
  • 12! = 2¹⁰x3⁵x5²x7¹x11¹, le faltan los dígitos 4,6,8 y 9

Definir la función

tal que (digitosDeFactorizacion n) es el conjunto de los dígitos que aparecen en la factorización de n. Por ejemplo,

Usando la función anterior, calcular la solución del problema.

Comprobar con QuickCheck que si n es mayor que 100, entonces

Soluciones

La solución en Maxima

Números como suma de N sumandos

Definir la función

tal que (sumas n xs) es la lista de los números que se pueden obtener como suma de n, o menos, elementos de xs. Por ejemplo,

Soluciones

Solución con Maxima

Compactación de listas

Definir la función

tal que (compacta xs) es la lista obtenida al compactar xs con las siguientes reglas:

  1. se eliminan los elementos Nothing;
  2. si dos elementos consecutivos tienen el mismo valor, se sustituyen por el sucesor de su valor y
  3. los restantes elementos no se cambian.

Por ejemplo,

Soluciones

Números primos de Hilbert

Un número de Hilbert es un entero positivo de la forma 4n+1. Los primeros números de Hilbert son 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, …

Un primo de Hilbert es un número de Hilbert n que no es divisible por ningún número de Hilbert menor que n (salvo el 1). Los primeros primos de Hilbert son 5, 9, 13, 17, 21, 29, 33, 37, 41, 49, 53, 57, 61, 69, 73, 77, 89, 93, 97, 101, 109, 113, 121, 129, 133, 137, …

Definir la sucesión

tal que sus elementos son los primos de Hilbert. Por ejemplo,

Soluciones