Reconocimiento de relaciones funcionales entre dos conjuntos

Una relación binaria entre dos conjuntos A y B se puede representar mediante un conjunto de pares (a,b) tales que a ∈ A y b ∈ B. Por ejemplo, la relación < entre A = {1,5,3} y B = {0,2,4} se representa por {(1,2),(1,4),(3,4)}.

Una relación R entre A y B es funcional si cada elemento de A está relacionado mediante R como máximo con un elemento de B. Por ejemplo, [(2,4),(1,5),(3,4)] es funcional, pero [(3,4),(1,4),(1,2),(3,4)] no lo es.

Definir la función

tal que (esFuncional r) se verifica si la relación r es funcional. Por ejemplo,

Soluciones

Menor x tal que los x múltiplos de n contienen todos los dígitos

Definir la función

tal que (menorX n) es el menor x tal que entre los x primeros múltiplos de n (es decir, entre n, 2×n, 3×n, … y x×n) contienen todos los dígitos al menos una vez. Por ejemplo, (menorX 92) es 6 ya que

Otros ejemplos

Soluciones

Conjunto de relaciones binarias entre dos conjuntos

Una relación binaria entre dos conjuntos A y B se puede representar mediante un conjunto de pares (a,b) tales que a ∈ A y b ∈ B. Por ejemplo, la relación < entre A = {1,5,3} y B = {0,2,4} se representa por {(1,2),(1,4),(3,4)}.

Definir las funciones

tales que

  • (relaciones xs ys) es el conjunto de las relaciones del conjunto xs en el conjunto ys. Por ejemplo,

  • (nRelaciones xs ys) es el número de relaciones del conjunto xs en el conjunto ys. Por ejemplo,

Soluciones

Sumas de dos cuadrados

Definir la función

tal que (sumasDe2Cuadrados n) es la lista de los pares de números tales que la suma de sus cuadrados es n y el primer elemento del par es mayor o igual que el segundo. Por ejemplo,

Soluciones

[/schedule]

Sucesión contadora

Definir las siguientes funciones

tales que

  • (numeroContado n) es el número obtenido al contar las repeticiones de cada una de las cifras de n. Por ejemplo,

  • (contadora n) es la sucesión cuyo primer elemento es n y los restantes se obtienen contando el número anterior de la sucesión. Por ejemplo,

  • (lugarPuntoFijoContadora n k) es el menor i <= k tal que son iguales los elementos en las posiciones i e i+1 de la sucesión contadora que cominza con n. Por ejemplo,

Nota: Este ejercicio ha sido propuesto por Ángel Ruiz.

Soluciones

Números dígito potenciales

Un número entero x es dígito potencial de orden n si x es la suma de los dígitos de x elevados a n. Por ejemplo,

  • 153 es un dígito potencial de orden 3 ya que 153 = 1^3+5^3+3^3
  • 4150 es un dígito potencial de orden 5 ya que 4150 = 4^5+1^5+5^5+0^5

Un número x es dígito auto potencial si es un dígito potencial de orden n, donde n es el número de dígitos de n. Por ejemplo, 153 es un número dígito auto potencial.

Definir las funciones

tales que

  • (digitosPotencialesOrden n) es la lista de los números dígito potenciales de orden n. Por ejemplo,

  • digitosAutoPotenciales es la lista de los números dígito auto potenciales. Por ejemplo,

Soluciones

Mayor número equidigital

Definir la función

tal que (mayorEquidigital x) es el mayor número que se puede contruir con los dígitos de x. Por ejemplo,

Soluciones

Pares definidos por su MCD y su MCM

Definir las siguientes funciones

tales que

  • (pares a b) es la lista de los pares de números enteros positivos tales que su máximo común divisor es a y su mínimo común múltiplo es b. Por ejemplo,

  • (nPares a b) es el número de pares de enteros positivos tales que su máximo común divisor es a y su mínimo común múltiplo es b. Por ejemplo,

Soluciones

Biparticiones de un número

Definir la función

tal que (biparticiones n) es la lista de pares de números formados por las primeras cifras de n y las restantes. Por ejemplo,

Soluciones

Números completos

Las descomposiciones de un número n son las parejas de números (x,y) tales que x >= y y la suma de las cuatro operaciones básicas (suma, producto, resta (el mayor menos el menor) y cociente (el mayor entre el menor)) es el número n. Por ejemplo, (8,2) es una descomposición de 36 ya que

Un número es completo si tiene alguna descomposición como las anteriores. Por ejemplo, el 36 es completo pero el 21 no lo es.

Definir las siguientes funciones

tales que

  • (descomposiciones n) es la lista de las descomposiones de n. Por ejemplo,

  • completos es la lista de los números completos. Por ejemplo,

Soluciones

Números libres de cuadrados

Un número entero positivo es libre de cuadrados si no es divisible el cuadrado de ningún entero mayor que 1. Por ejemplo, 70 es libre de cuadrado porque sólo es divisible por 1, 2, 5, 7 y 70; en cambio, 40 no es libre de cuadrados porque es divisible por 2^2.

Definir la función

tal que (libreDeCuadrados x) se verifica si x es libre de cuadrados. Por ejemplo,

Otro ejemplo,

Soluciones

El problema de las celebridades

La celebridad de una reunión es una persona al que todos conocen pero que no conoce a nadie. Por ejemplo, si en la reunión hay tres personas tales que la 1 conoce a la 3 y la 2 conoce a la 1 y a la 3, entonces la celebridad de la reunión es la 3.

La relación de conocimiento se puede representar mediante una lista de pares (x,y) indicando que x conoce a y. Por ejemplo, ka reunioń anterior se puede representar por [(1,3),(2,1),(2,3)].

Definir la función

tal que (celebridad r) es el justo la celebridad de r, si en r hay una celebridad y Nothing, en caso contrario. Por ejemplo,

Soluciones

[schedule expon=’2017-05-16′ expat=»06:00″]

  • Las soluciones se pueden escribir en los comentarios hasta el 16 de mayo.
  • El código se debe escribir entre una línea con <pre lang=»haskell»> y otra con </pre>

[/schedule]

[schedule on=’2017-05-16′ at=»06:00″]

[/schedule]

Pares a distancia dada

Definir la función

tal que (pares xs k) es la lista de pares de elementos de xs que están a distancia k (se supone que los elementos de xs son distintos). Por ejemplo,

Soluciones

Problema de las 3 jarras

En el problema de las tres jarras (A,B,C) se dispone de tres jarras de capacidades A, B y C litros con A > B > C y A par. Inicialmente la jarra mayor está llena y las otras dos vacías. Queremos, trasvasando adecuadamente el líquido entre las jarras, repartir por igual el contenido inicial entre las dos jarras mayores. Por ejemplo, para el problema (8,5,3) el contenido inicial es (8,0,0) y el final es (4,4,0).

Definir las funciones

tales que

  • (solucionesTresJarras p) es la lista de soluciones del problema de las tres jarras p. Por ejemplo,

  • (tresJarras p) es una solución del problema de las tres jarras p con el mínimo mínimo número de trasvase, si p tiene solución y Nothing, en caso contrario. Por ejemplo,

Soluciones

Recorrido en ZigZag

El recorrido en ZigZag de una matriz consiste en pasar de la primera fila hasta la última, de izquierda a derecha en las filas impares y de derecha a izquierda en las filas pares, como se indica en la figura.

Definir la función

tal que (recorridoZigZag m) es la lista con los elementos de la matriz m cuando se recorre esta en ZigZag. Por ejemplo,

Soluciones

Sucesión de Recamán

La sucesión de Recamán está definida como sigue:

Definir las funciones

tales que

  • sucRecaman es la lista de los términos de la sucesión de Recamám. Por ejemplo,

  • (invRecaman n) es la primera posición de n en la sucesión de Recamán. Por ejemplo,

  • (graficaSucRecaman n) dibuja los n primeros términos de la sucesión de Recamán. Por ejemplo, (graficaSucRecaman 300) dibuja
    Sucesion_de_Recaman_1
  • (graficaInvRecaman n) dibuja los valores de (invRecaman k) para k entre 0 y n. Por ejemplo, (graficaInvRecaman 17) dibuja
    Sucesion_de_Recaman_2
    y (graficaInvRecaman 100) dibuja
    Sucesion_de_Recaman_3

Soluciones

Números como sumas de primos consecutivos

El número 311 se puede escribir de 5 formas distintas como suma de 1 o más primos consecutivos

el número 41 se puede escribir de 4 formas

y el número 14 no se puede escribir como suma de primos consecutivos.

Definir la función

tal que (sumas x) es la lista de las formas de escribir x como suma de uno o más números primos consecutivos. Por ejemplo,

Soluciones

Subnúmeros pares

Los subnúmeros de un número x son los números que se pueden formar con dígitos de x en posiciones consecutivas. Por ejemplo, el número 254 tiene 6 subnúmeros: 2, 5, 4, 25, 54 y 254.

Definir las funciones

tales que

  • (subnumerosPares x) es la lista de los subnúmeros pares de x. Por ejemplo,

  • (nSubnumerosPares x) es la cantidad de subnúmeros pares de x. Por ejemplo,

Soluciones

Elementos con su doble en el conjunto

Definir la función

tal que (conDoble xs) es la lista de los elementos del conjunto xs (representado como una lista sin elementos repetidos) cuyo doble pertenece a xs. Por ejemplo,

Referencia: Basado en el problema Doubles de POJ (Peking University Online Judge System).

Soluciones

Problema de las jarras

En el problema de las jarras (A,B,C) se tienen dos jarras sin marcas de medición, una de A litros de capacidad y otra de B. También se dispone de una bomba que permite llenar las jarras de agua.

El problema de las jarras (A,B,C) consiste en determinar cómo se puede lograr tener exactamente C litros de agua en alguna de las dos jarras.

Definir la función

tal (jarras (a,b,c)) es una solución del problema de las jarras (a,b,c) con el mínimo número de movimientos, si el problema tiene solución y Nothing, en caso contrario. Por ejemplo,

La interpretación de la solución anterior es

Otros ejemplos:

Soluciones

Distancias entre primos consecutivos

Los 15 primeros números primos son

Las distancias entre los elementos consecutivos son

La distribución de las distancias es

(es decir, el 1 aparece una vez, el 2 aparece 6 veces, etc.) La frecuencia de las distancias es

(es decir, el 1 aparece el 7.142857%, el 2 el 42.857143% etc.)

Definir las funciones

tales que

  • (cuentaDistancias n) es la distribución de distancias entre los n primeros primos consecutivos. Por ejemplo,

  • (frecuenciasDistancias n) es la frecuencia de distancias entre los n primeros primos consecutivos. Por ejemplo,

  • (graficas ns) dibuja las gráficas de (frecuenciasDistancias k) para k en ns. Por ejemplo, (graficas [10,20,30]) dibuja
    Distancias_entre_primos_consecutivos1
    (graficas [1000,2000,3000]) dibuja
    Distancias_entre_primos_consecutivos2
    y (graficas [100000,200000,300000]) dibuja
    Distancias_entre_primos_consecutivos3
  • (distanciasMasFrecuentes n) es la lista de las distancias más frecuentes entre los elementos consecutivos de la lista de los n primeros primos. Por ejemplo,

Comprobar con QuickCheck si para todo n > 160 se verifica que (distanciasMasFrecuentes n) es [6].

Soluciones

Rotaciones divisibles por 4

Las rotaciones de 928160 son 928160, 281609, 816092, 160928, 609281 y 92816. De las cuales, las divisibles por 4 son 928160, 816092, 160928 y 92816.

Definir la función

tal que (nRotacionesDivisibles n) es el número de rotaciones del número n divisibles por 4. Por ejemplo,

Soluciones

Puntos alcanzables en un mapa

Un mapa con dos tipos de regiones (por ejemplo, tierra y mar) se puede representar mediante una matriz de ceros y unos.

Para los ejemplos usaremos los mapas definidos por

Definir las funciones

tales que

  • (alcanzables p) es la lista de los puntos de mapa m que se pueden alcanzar a partir del punto p moviéndose en la misma región que p (es decir, a través de ceros si el elemento de m en p es un cero o a través de unos, en caso contrario) y los movimientos permitidos son ir hacia el norte, sur este u oeste (pero no en diagonal). Por ejemplo,

  • (esAlcanzable m p1 p2) se verifica si el punto p1 es alcanzable desde el p1 en el mapa m. Por ejemplo,

Nota: Este ejercicio está basado en el problema 10 kinds of people de Kattis.

Soluciones

Número de dígitos del factorial

Definir las funciones

tales que

  • (nDigitosFact n) es el número de dígitos de n!. Por ejemplo,

  • (graficas xs) dibuja las gráficas de los números de dígitos del factorial de k (para k en xs) y de la recta y = 5.5 x. Por ejemplo, (graficas [0,500..10^6]) dibuja
    Numero_de_digitos_del_factorial

Nota: Este ejercicio está basado en el problema How many digits? de Kattis en donde se impone la restricción de calcular, en menos de 1 segundo, el número de dígitos de los factoriales de 10.000 números del rango [0,1.000.000].

Se puede simular como sigue

Soluciones

Reducción de repeticiones consecutivas

Definir la función

tal que (reducida xs) es la lista obtenida a partir de xs de forma que si hay dos o más elementos idénticos consecutivos, borra las repeticiones y deja sólo el primer elemento. Por ejemplo,

Nota: Basado en el ejercicio Apaxiaaaaaaaaaaaans! de Kattis.

Soluciones

Suma de subconjuntos

Los subconjuntos de [1, 4, 2] son

Las sumas de sus elementos son

Y la suma de las sumas es 28.

Definir la función

tal que (sumaSubconjuntos xs) es la suma de las sumas de los
subconjuntos de xs. Por ejemplo,

Soluciones

Por 3 o más 5

El enunciado del problema Por 3 o más 5 de ¡Acepta el reto! es el siguiente

Cuenta la leyenda que un famoso matemático, tras aprender a sumar y multiplicar a la tierna edad de 3 años en apenas 5 días, se dio cuenta de que, empezando por 1, podía generar un montón de números sin más que multiplicar por 3 o sumar 5 a alguno de los que ya hubiera generado antes.

Por ejemplo, el 23 (edad a la que se casaría) lo obtuvo así: ((1 + 5) × 3) + 5
Por su parte el 77 (edad a la que tendría su primer bisnieto) lo consiguió: (((1 × 3 + 5) × 3) × 3) + 5

Por mucho que lo intentó, algunos números, sin embargo, resultaron ser imposibles de obtener, como por ejemplo el 5, el 7 o el 15.

Se dice que un número es generable si se puede escribir como una sucesión (quizá vacía) de multiplicaciones por 3 y sumas de 5 al número 1.

Definir las siguientes funciones

tales que

  • generables es la sucesión de los números generables. Por ejemplo,

  • (generable x) se verifica si x es generable. Por ejemplo,

  • (arbolGenerable x) es el árbol de los números generables menores o iguales a x. Por ejemplo,

Soluciones

Números cubifinitos

El enunciado del problema Números cubifinitos de ¡Acepta el reto! es el siguiente

Se dice que un número es cubifinito cuando al elevar todos sus dígitos al cubo y sumarlos el resultado o bien es 1 o bien es un número cubifinito.

Por ejemplo, el número 1243 es cubifinito, pues al elevar todos sus dígitos al cubo obtenemos 100 que es cubifinito.

Por su parte, el 513 no es cubifinito, pues al elevar al cubo sus dígitos conseguimos el 153 que nunca podrá ser cubifinito, pues la suma de los cubos de sus dígitos vuelve a dar 153.

Definir las funciones

tales que

  • (esCubifinito n) se verifica si n es un número cubifinito. Por ejemplo,

  • (grafica n) dibuja la gráfica de la sucesión de los primeros n números cubifinitos. Por ejemplo, al evaluar (grafica 50) se dibuja
    Numeros_cubifinitos

Soluciones

Distribución de diferencias de dígitos consecutivos de pi

La distribución de las diferencias de los dígitos consecutivos para los 18 primeros dígitos de pi se calcula como sigue: los primeros 18 dígitos de pi son

Las diferencias de sus elementos consecutivos es

y la distribución de sus frecuencias en el intervalo [-9,9] es

es decir, el desde el -9 a -5 no aparecen, el -4 aparece 3 veces, el -2 aparece 2 veces y así sucesivamente.

Definir las funciones

tales que

  • (distribucionDDCpi n) es la distribución de las diferencias de los dígitos consecutivos para los primeros n dígitos de pi. Por ejemplo,

  • (graficas ns f) dibuja en el fichero f las gráficas de las distribuciones de las diferencias de los dígitos consecutivos para los primeros n dígitos de pi, para n en ns. Por ejemplo, al evaluar (graficas [100,250..4000] «distribucionDDCpi.png» se escribe en el fichero «distribucionDDCpi.png» la siguiente gráfica
    Distribucion_de_diferencias_de_digitos_consecutivos_de_pi

Nota: Se puede usar la librería Data.Number.CReal.

Soluciones

Caminos minimales en un arbol numérico

En la librería Data.Tree se definen los árboles y los bosques como sigue

Se pueden definir árboles. Por ejemplo,

Y se pueden dibujar con la función drawTree. Por ejemplo,

Los mayores divisores de un número x son los divisores u tales que u > 1 y existe un v tal que 1 < v < u y u*v = x. Por ejemplo, los mayores divisores de 24 son 12, 8 y 6.

El árbol de los predecesores y mayores divisores de un número x es el árbol cuya raíz es x y los sucesores de cada nodo y > 1 es el conjunto formado por y-1 junto con los mayores divisores de y. Los nodos con valor 1 no tienen sucesores. Por ejemplo, el árbol de los predecesores y mayores divisores del número 6 es

Definir las siguientes funciones

tales que

  • (mayoresDivisores x) es la lista de los mayores divisores de x. Por ejemplo,

  • (arbol x) es el árbol de los predecesores y mayores divisores del número x. Por ejemplo,

  • (caminos x) es la lista de los caminos en el árbol de los predecesores y mayores divisores del número x. Por ejemplo,

  • (caminosMinimales x) es la lista de los caminos en de menor longitud en el árbol de los predecesores y mayores divisores del número x. Por ejemplo,

Soluciones