Máxima longitud de sublistas crecientes

Definir la función

tal que (longitudMayorSublistaCreciente xs) es la el máximo de las longitudes de las sublistas crecientes de xs. Por ejemplo,

Nota: Se puede usar programación dinámica para aumentar la eficiencia.

Soluciones

La sucesión de Sylvester

La sucesión de Sylvester es la sucesión que comienza en 2 y sus restantes términos se obtienen multiplicando los anteriores y sumándole 1.

Definir las funciones

tales que

  • (sylvester n) es el n-ésimo término de la sucesión de Sylvester. Por ejemplo,

  • (graficaSylvester d n) dibuja la gráfica de los d últimos dígitos de los n primeros términos de la sucesión de Sylvester. Por ejemplo,
    • (graficaSylvester 3 30) dibuja
      La_sucesion_de_Sylvester_(3,30)
    • (graficaSylvester 4 30) dibuja
      La_sucesion_de_Sylvester_(4,30)
    • (graficaSylvester 5 30) dibuja
      La_sucesion_de_Sylvester_(5,30)

Nota: Se puede usar programación dinámica para aumentar la eficiencia.

Soluciones

Conjetura de Goldbach

Una forma de la conjetura de Golbach afirma que todo entero mayor que 1 se puede escribir como la suma de uno, dos o tres números primos.

Si se define el índice de Goldbach de n > 1 como la mínima cantidad de primos necesarios para que su suma sea n, entonces la conjetura de Goldbach afirma que todos los índices de Goldbach de los enteros mayores que 1 son menores que 4.

Definir las siguientes funciones

tales que

  • (indiceGoldbach n) es el índice de Goldbach de n. Por ejemplo,

  • (graficaGoldbach n) dibuja la gráfica de los índices de Goldbach de los números entre 2 y n. Por ejemplo, (graficaGoldbach 150) dibuja
    Conjetura_de_Goldbach_150

Comprobar con QuickCheck la conjetura de Goldbach anterior.

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Pensamiento

«La diferencia entre los matemáticos y los físicos es que después de que los físicos prueban un gran resultado piensan que es fantástico, pero después de que los matemáticos prueban un gran resultado piensan que es trivial.»

Lucien Szpiro.

Número de emparejamientos de amigos

El problema del número de emparejamiento de amigos consiste en calcular el número de formas de emparejar n amigos teniendo en cuenta que cada uno puede permanecer soltero o puede ser emparejado con algún otro amigo y que cada amigo puede ser emparejado sólo una vez. Por ejemplo, los 4 posibles emparejamientos de 3 amigos son

Definir la función

tal que (nEmparejamientos n) es el número de formas de emparejar a los n amigos. Por ejemplo,

Soluciones

Pensamiento

Toda la imaginería
que no ha brotado del río,
barata bisutería.

Antonio Machado

Triángulo de Euler

El triángulo de Euler se construye a partir de las siguientes relaciones

Sus primeros términos son

Definir las siguientes funciones:

tales que

  • (numeroEuler n k) es el número de Euler A(n,k). Por ejemplo,

  • (filaTrianguloEuler n) es la n-ésima fila del triángulo de Euler. Por ejemplo,

  • trianguloEuler es la lista con las filas del triángulo de Euler

Soluciones

Pensamiento

Señor San Jerónimo,
suelte usted la piedra
con que se machaca.
Me pegó con ella.

Antonio Machado